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1. Introduction

1.1   Quantum computers and quantum bits
Quantum computers are expected to be overwhelm-

ingly faster than conventional classical computers
mainly because of quantum parallelism. The most
fundamental element of quantum computers is the
qubit (quantum bit). The qubit is physically a two-
state quantum system. For a two-state system to be
used as a qubit, however, it must have the potential to
satisfy the following conditions. (i) The quantum
coherence should remain stable in the environment
for a long period of time. (ii) Its state must be con-
trollable in accordance with a given purpose. (iii) The
measurement of the state can be carried out with suf-
ficient precision. (iv) Many qubits can be implement-
ed in a small space. 

Several physical implementations of qubits have
been theoretically proposed and experiments are cur-
rently in progress [1]-[4]. Of these, qubits imple-
mented in superconducting circuits (a superconduct-
ing network with Josephson junctions) are promising.
A superconducting gap excludes quasiparticle
motion, which often causes decoherence. Each
Josephson junction has two degrees of freedom:
charge and phase. This gives a wide range of poten-
tial controllability. Superconducting circuits can be
designed to have appropriate parameters by present
microfabrication techniques. Moreover, supercon-

ducting qubits can be integrated in a small chip. 
In this paper, I introduce one type of superconduct-

ing qubit, the superconducting flux-qubit. Experi-
ments on flux-qubits are being carried out by only a
few groups around the world. One of them is the
Superconducting Quantum Physics Research Group
in NTT Basic Research Laboratories, which is the
only one in Japan. Recently, we obtained an advanced
result in relation to the qubit measurement process
[4]. Here, I describe the significance of this result in
terms of quantum computers and quantum physics. 

1.2   Superconducting flux-qubit
Consider a superconducting ring. We apply an

external magnetic field which corresponds to half a
flux quantum Φ0/2 piercing the ring. Then, the ring
has two stable states: one in which the circulating
supercurrent flows clockwise around the ring and one
in which it flows counterclockwise. We call the for-
mer the “ L〉” state and the latter the “ R〉” state. In our
usual “classical” world, we only find the ring is in
either  L〉 “or”  R〉 probabilistically. In the quantum
world, however, the ring can be in a superposition
state ψ〉 = a L〉 + b R〉 , where a and b are complex-
number coefficients, satisfying  a 2 +  b 2 = 1. The
current flows clockwise and counterclockwise at the
same time! If we measure the current we obtain  L〉
and  R〉 with probabilities  a 2 and  b 2, respectively,
and the direction of the current gets determined.
However, before the measurement, the direction is
not determined. It might be easier to imagine a super-
position state of a microscopic object, for example,
electronic motion, or electronic spin. In the supercon-
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ducting ring mentioned above, there are millions of
electrons (Cooper-pairs). All the electrons (Cooper-
pairs) in the ring are traveling in opposite directions
in  L〉 and  R〉 . 

This type of quantum superposition state is called
macroscopic quantum coherence (MQC). The ques-
tion of whether MQC is actually possible was origi-
nally introduced by A. J. Leggett, in the 1980s [5].
Recently MQC in a superconducting ring with
Josephson junctions has been experimentally
observed [1]. This MQC can also be used as a qubit
because it is a typical two-state quantum system with
parameters that can be controlled as we wish. A qubit
based on MQC in a superconducting ring is called a
superconducting flux-qubit. 

1.3   Single-shot measurement
The single-shot measurement of a single quantum

system is interesting especially as regards macro-
scopic quantum objects. If the macroscopic extrapo-
lation of quantum physics were justified, then orthog-
onal quantum states would certainly be distinguished
by a single measurement regardless of the size of the
objects. However, due to the vulnerability of macro-
scopic superposition and the sensitivity of the mea-
suring device, we must usually perform an enormous
number of measurements over the same states to
obtain sufficient readout resolution for the MQC state
even though the two states are orthogonal. A mea-
surement technique that gives us information from a
single measurement is called a “single-shot measure-
ment”. Therefore, it is interesting to find out whether
or not the simple single-shot measurement procedure
used in thought experiments can be realized in real

experiments and described with quantum mechanical
correctness. 

Single-shot measurement also plays an important
role in quantum computation, which has been demon-
strated with liquid nuclear magnetic resonance,
showing the operations of quantum algorithms. Sev-
eral Josephson junction systems exhibit Rabi oscilla-
tions as a simple 1-qubit gate operation [1], [2]. These
systems use either time or spatial ensemble readout.
The possibility of a single-shot readout of a charge-
based qubit by superconductor phase measurement
has been reported by Vion et al. [3]. Another interest-
ing feature of single-shot measurement is related to
entanglement. An example is two qubits or two parti-
cles, entangled with each other, such as,  01〉 +  10〉 ,
 00〉 +  11〉 . It is well known that the average readout
of an entangled state provides insufficient informa-
tion about the non-classical correlation between the
two particles. A single-shot measurement is able to
extract information on individual quantum events in
the system. Therefore, the single-shot measurement
of a single quantum system is of interest in terms of
both pure quantum mechanics and quantum compu-
tation. 

2. Experimental configurations

2.1   Three-Josephson-junction qubit
The real flux-qubit used in our experiments has

three Josephson junctions. Figure 1(a) is a scanning
electron micrograph of a superconducting ring
(inside) and a DC-SQUID (outside) as a readout
device. The inner ring (qubit) contains three Joseph-
son junctions, which appear as narrow constrictions.
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Fig. 1.   (a) A scanning electron microscope photograph of a superconducting ring and a DC-SQUID as a readout device. 
(b) 3D plot of the potential energy of the qubit.
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The DC-SQUID with two Josephson junctions has
two leads extending up and down. The ring and the
DC-SQUID are coupled magnetically via mutual
inductance M. This structure was first proposed by
Professor Mooij’s group at the Technical University
of Delft [6]. The Josephson and charging energies of
the two identical junctions are EJ and EC. Those of the
third junction are αEJ and EC/α with α = 0.8. Here EC

is defined as EC = e2/(2C) with the junction capaci-
tance C. For our sample, EC = 6.17 GHz and EJ = 308
GHz.  The junction areas of the DC-SQUID are both
100 × 100 nm2. The inner ring is 5.1 × 5.3 µm2 and
the DC- SQUID is 7.3 × 7.7 µm2. 

The Josephson potential UJ = EJ(2 + α – cos[γ1] –
αcos[2πf – γ1 +γ2]) of the qubit is shown in Fig. 1(b),
where γ1 and γ2 are the phase differences at two iden-
tical Josephson junctions and f is the filling factor of
the external magnetic field, f ≡ Φext/Φ0. The coeffi-
cient α, which determines the barrier height, is fixed at
α = 0.8. The f dependence of the Josephson potential is
periodic with period of 1. Most of our qubit measure-
ments were carried out in the vicinity of f = 1.5, where
we obtain better DC-SQUID sensitivity compared
with f ≈ 0.5. The energy plot is shown as a function of
γp ≡ (γ1 + γ2)/2 and γm ≡ (γ1 + γ2)/2 with f = 1.5. We
can see that a symmetrical double
well is formed along the axis γm. 

In this double well system at f ≈
1.5 the ground  0〉 and first excited
 1〉 states become bonding and anti-
bonding states, respectively due to
macroscopic tunneling through the
potential barrier. The relative energy
difference between the wells is con-
trolled by f. When f deviates from
1.5,  the double well  potential
becomes asymmetric and the wave-
function of the ground (excited)
state becomes localized in the lower
(higher) well. These two localized
states,  L〉 and  R〉 , are classically
stable states and are robust against
decoherence. This constitutes a
macroscopic two-level system and
should exhibit superposition if
quantum mechanics is to be extrap-
olated to a macroscopic scale of sev-
eral micrometers. 

We can treat the states of the ring
as a pseudo two-level system and
obtain a reduced two-level-system
Hamiltonian with a { L〉 , R〉} basis: 

Hq = εσz – ∆σx, (1)
where  is the energy difference between the localized
states in the left and right wells and can be controlled
by f. Here ∆ represents the macroscopic quantum tun-
neling between the wells, and 

(2)

The eigenenergy of the ground (excited) states

becomes . The eigenstates are 

 0〉 = sin(θ/2) L〉 + cos(θ/2) R〉 , 
(3)

 1〉 = –cos(θ/2) L〉 + sin(θ/2) R〉
Figure 2(a) shows the energy levels of the ground

and first excited states E0 and E1, as a function of the
filling factor of the external magnetic flux f. The ener-
gy levels exhibit anti-crossing at f = 1.5 due to macros
ically predicted quantum mechanically averaged val-
ues of the qubit circulation current Icir = Ico 〈i σz i〉 (i
= 0,1), for the ground  0〉 and the first excited states
 1〉 , obtained using 〈0 σz 0〉 = –cos(θ) and 〈1 σz 1〉 =
cos(θ), where Ico is the maximum supercurrent
around the qubit ring. 

E0(1) = – (+)   ε2 + ∆2

σz = L〉〈 L – R〉〈 R ≡             , 

σx = L〉〈 R + R〉〈 L ≡ 
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Fig. 2.   (a) Energy diagram of the qubit.
(b) Quantum mechanical average of the qubit circulating current.
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2.2   Measurement with DC-SQUID
The observable difference between the states  L〉

and  R〉 is the orientation of the flux induced by the
qubit circulation current because the direction of the
current is opposite for  L〉 and  R〉 . The induced flux
φq ≈ 10–3Φ0 is very small. Therefore, in order to mea-
sure it we utilize the current-voltage (I-V) character-
istics of the DC-SQUID, which works as a highly
sensitive flux detector. The sample was cooled by
using a dilution refrigerator. Since our DC-SQUID is
under-damped, the I-V characteristics have hystere-
sis. The switching current, where the voltage across
the DC-SQUID jumps from zero to a finite value,
depends on the magnetic flux piercing the DC-
SQUID. We ramped up the bias current while moni-
toring the voltage across the DC-SQUID and mea-
sured the switching current. 

The Hamiltonian of the DC-SQUID when there is
no flux induced by the qubit is 

(4)

where CS is the capacitance of the two Josephson
junctions in the SQUID, γ+ ≡ (γS1 + γS2)/2, γS1 and γS2

are the phase differences of two Josephson junctions
in the SQUID, ESJ is the Josephson energy of the
junctions, and Φe is the magnetic flux piercing the
SQUID ring. The switching current Isw is the bias cur-
rent IS value at which γ+ escapes from the Josephson
potential well. Disregarding thermal effects or other
renormalization, the switching current is roughly
given by 

Isw = (2e)/ ESJcos[πΦe/Φ0], (5)
which changes with the magnetic flux Φe. When the
qubit is placed in the SQUID ring, the magnetic flux
φq induced by the qubit circulating current is added to
Φe. So, we expect to be able to measure φq by mea-
suring the switching current. When the qubit is in a
superposition state  ψ〉 = a L〉 + b R〉 , however, it is
not so trivial what property of the qubit we measure
with the DC-SQUID switching current. This is dis-
cussed in section 3.2. 

The maximum switching current of the DC-SQUID
is around 260 nA. The switching at the Josephson
junction is essentially a stochastic process. In addi-
tion to the classical thermal effect, quantum tunneling
makes a major contribution to switching events at
lower temperatures. We fabricated rings and DC-
SQUIDs with several different sizes of junctions and
loops and measured them to find a system that satis-
fied both single-shot measurement and coherent

superposition. As the result, we found the system that
enables us to observe macroscopic coherence with
high readout resolution. 

3. Experimental results and discussion

3.1   Switching current behavior
Figure 3(a) shows normalized DC-SQUID switch-

ing currents modulated by the inner ring (qubit) state
as a function of the external magnetic field at differ-
ent temperatures. Each curve is shifted vertically for
clarity. The single small points correspond to single-
shot measurements. No averaging was performed.
There is a χ-shape cross structure around f = 1.5,
where the wavefunction is expected to be a superpo-
sition of macroscopically distinct states,  L〉 and  R〉 .
The presence of the cross region suggests that the
macroscopic superposition states are formed as
ground and excited states. 

The solid curves are the expected switching cur-
rents estimated from the average qubit circulation
current 〈Icir〉 for the ground state and the first excited
state. These are shown in Fig. 2(b). The dense stripe
corresponds to the ground state  0〉 and the other
stripe crossing at f ≈ 1.5 corresponds to the excited
state  1〉 . The normalization of the vertical axis from
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Fig. 3.   (a) DC-SQUID switching current modulated by the
qubit.

(b) “classical” sample without χ-shape.
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–1 to +1 is based on two fully localized states, one on
either side of the well as wavefunctions of  L〉 or  R〉 ,
where the current flows clockwise and counterclock-
wise, respectively. When we repeated the measure-
ment in a fixed external magnetic field f, the mea-
surement results were random on either stripe and
there were only a few points in between. We set the
repetition period for successive single-shot measure-
ments at τrep ≈ 3.5 ms, which is much longer than the
relaxation time of the ring. Therefore, the states were
well initialized in thermal equilibrium before the
measurements. 

For comparison, the readout data of a sample with-
out coherent superposition at 25 mK is shown in Fig.
3(b). Hereafter, we call this a “classical” sample. In
this sample, the Josephson and charging energies of
the two junctions are 578 and 3.12 GHz, respectively.
There is no cross region. The state in this system is
localized either in  L〉 or  R〉 . All the readout data are
completely separated, and there is no superposed
region. In this measurement we completed the single-
shot measurement of a localized state but not that of
a superposed state. 

In Fig. 3(a), the ground and excited states,  0〉 and
 1〉 are read out well and separately except at exactly
f ≈ 1.5. Measurements in the cross region become sin-
gle-shot measurements of  0〉 or  1〉 , which are super-
positions of  L〉 and  R〉 . This means that the mea-
surement provided the information on whether the
state was a ground or excited state. 

Each stripe has its own distribution, which origi-
nates from the external magnetic noise and intrinsic
fluctuation of the switching current at the DC-
SQUID, since the DC-SQUID has no shunt resistor to
achieve single-shot measurement. The standard devi-
ation of the switching current has an equivalent flux
fluctuation of 2.7 × 10–3Φ0 at f = 1.5, where the resid-
ual distribution originates with the DC-SQUID itself,
because the readout switching currents of the  0〉 and
 1〉 states become identical. This distribution is small-
er than the difference between two macroscopically
distinct quantum states. This indicates that there is
sufficient distinguishability between the two states.
Even in the χ cross region, the χ shape is clearly vis-
ible. This illustrates the successful single-shot mea-
surement of a macroscopic quantum superposition
state. 

3.2   What do we measure with a DC-SQUID?
The behavior of the switching current versus the

external flux f in Fig. 3(a) is very similar to that of the
quantum mechanically averaged value of the qubit

circulating current Icir in Fig. 2(b). At first glance, this
is very strange. 

Since the circulation current Icir is proportional to
the z-component of the qubit spin, it should be writ-
ten as Icir = Icoσz, under the two-state approximation
for the qubit. According to quantum mechanics,
when the spin is in a superposition state  ψ〉 = a L〉 +
b R〉 , each measurement of σz provides the discrete
result –1 or 1 probabilistically, and never provides an
intermediate value. Although the quantum-mechani-
cally averaged value of the circulating current for the
superposition state  ψ〉 = a L〉 + b R〉 is given by 〈Icir〉
= Ic 0(2 a 2 – 1), this value is obtained after we mea-
sure the Icir of the state  ψ〉 many times and calculate
the average. Why did each of our switching currents
exhibit the “average” value? 

To answer this question requires the aid of a theory
based on the Hamiltonian of the qubit-SQUID com-
posite system. By integrating out an invisible vari-
able, we obtain the effective total Hamiltonian of the
qubit-SQUID composite system as H’tot = HSQ + Hint

+ Hq, where HSQ and Hq are already given in Eqs. (1)
and (4) and 

(6)

where L is the self-inductance of the SQUID ring.
The switching current is the bias current at which γ+

escapes from the Josephson potential well VSQ(γ+;σz)
≡ –2ESJcos[γ+]cos[πΦe/Φ0] – Is (h/2e)γ+ + Hint.
Through the interaction Hint, the qubit state σz affects
the SQUID wavefunction ψ(γ+), so the switching cur-
rent varies with the change in the qubit state. If the
qubit were a classical system, which takes only the
two states  L〉 and  R〉 , the switching current would
show only two values corresponding to the SQUID
potential VSQ(γ+;σz = ±1). However, in order to dis-
cuss the switching current when the qubit is in a
superposition state  ψ〉 = a L〉 + b R〉 , we have to
determine the wavefunction of the total system
according to the total Hamiltonian H’tot, and find the
bias current at which γ+ escapes from the potential
well. The wavefunction of the total system can be
written schematically as 

 ψtot〉 = ∫dγ+{ψL(γ+) γ+〉 ⊗  L〉
+ ψR(γ+) γ+〉 ⊗  R〉},

(7)

where  γ+〉 is the γ+ eigenstate, and ψL (γ+) and ψR  (γ+)
are the coefficients including the amplitude (i.e., 
not  normalized) .  The quant i ty  E[ψL,ψR ]  ≡
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between the qubit and the SQUID. E [ψL,ψR ] =1,0
means no entanglement (separable) and maximum
entanglement, respectively. 

If the measurement with the SQUID were a σz mea-
surement as introduced above, the observed switch-
ing current would appear at a value corresponding to
ψL (γ+) or ψR (γ+), probabilistically. Therefore, if
ψL (γ+) were not proportional to ψR  (γ+) and E [ψL,ψR ]
≈ 1, the switching current would split into two values
even for a one qubit state at absolute zero tempera-
ture. However, when we carried out numerical calcu-
lations on the time evolution of the density operator
of the total system [7], we found that total system
wavefunctions with low energies are not entangled
states but separable states, that is, E [ψL,ψR ] ≈ 1 (ψL

(γ+) ∝ ψL (γ+) ≡ ψ(γ+)). Only the position in the γ+

coordinate of the wavepacket ψ(γ+) depends on the
qubit state. And the obtained switching current corre-
sponds to that of ψ(γ+), which is a single value, in
contrast to the case of the entangled state mentioned
above. In addition, the numerical calculation showed
that the switching current has a two-value distribution
in the presence of strong decoherence, which
destroys the qubit superposition [7]. This explains the
classical case in Fig. 3(b). 

We find that the center position of the wavepacket
ψ(γ+) is approximately the bottom of the potential
VSQ(γ+;σz = 2 a 2 – 1) by variational calculation. The
resulting switching current becomes that for a usual
SQUID with this potential. This value coincides with
the quantum-mechanical average Isw of the switching
current for the qubit  ψ〉 = a L〉 + b R〉 . The fact that
the switching current behaves as the average value,
which may at first seem strange, is explained as
described above. Moreover, this indicates a very
important fact about the DC-SQUID measurement of
flux-qubit states. The measurement is not a projection
measurement that determines whether the qubit is  L〉
or  R〉 . It is a simple measurement of the weight
 a 2(= 1 –  b 2) of the qubit. 

The flux φq induced by the qubit ring current has a
large quantum fluctuation when the qubit is in a
superposition state. The fluctuation of the measured
switching current, however, has almost nothing to do
with the fluctuation. The switching current fluctua-
tion is caused mainly by fluctuations of the SQUID
itself. This may give us important clues for improv-
ing the measurement resolution. 

3.3   Microwave irradiation
External driving by microwaves that invoke a tran-

sition between two states is important if we are to

employ this superconducting ring as a qubit, because
it is a typical way of controlling qubits. Therefore, we
applied continuous microwaves to both samples to
induce Rabi oscillation. The sample in Fig. 3(b)
(without χ) did not respond to the microwaves while
a resonant transition was observed for the sample in
Fig. 3(a) (with χ). The readout is still well separated
into the  0〉 and  1〉 states, even though the states are
within continuous transitions between  0〉 and  1〉 via
the superposition. This indicates that projective sin-
gle-shot measurement is also achieved against the
superposition state as  ψ〉 = a L〉 + b R〉 . The dephas-
ing time of the ring is estimated from the resonant
width of the averaged resonance curve as T *

2 ≈ 5 ns.
This means that during this time scale, the coherence
of the ring is sustained because the measurement is
effectively switched off even if the DC-SQUID is per-
manently aligned close to the ring. However once
switching occurs, the DC-SQUID will provide a mea-
surement result with sufficient resolution. This is
mainly a contribution of the under-damped character-
istics of the DC-SQUID. 

4. Conclusion

I described our experiments on superconducting
flux-qubits and the successful measurement of the
qubit state with a DC-SQUID, in a single-shot man-
ner. We achieved MQC in a small superconducting
ring, which is the superposition of two macroscopi-
cally distinct states  L〉 and  R〉 . And we detected the
existence of this superposition using an under-
damped DC-SQUID, which is a very sensitive mag-
netic-flux probe with high resolution. 

In previously reported superconducting qubit
experiments, an extremely large number of results
had to be averaged to detect the qubit state. We suc-
ceeded in obtaining sufficient resolution to distin-
guish the qubit state with only one measurement.
This single-shot measurement result posed a new
question regarding what is observed as the SQUID
switching current, especially when the qubit is in a
superposition state  ψ〉 = a L〉 + b R〉 . Theoretical
analysis with numerical calculations provided the
answer that the switching current reflects 2 a 2 – 1,
which is a continuous value for a superposition state
between two localized states  L〉 and  R〉 . This
explains why the switching current behaves almost
identically to the quantum-mechanically averaged
value 〈Icir 〉 of the qubit circulating current. The result
reported here is a direct observation of macroscopic
superposition, while identifying each measurement
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event separately. I believe that single-shot/single-sys-
tem quantum measurement will further aid our under-
standing of the quantum measurement process, which
is interesting as regards both pure science and engi-
neering, in conjunction with the recent rapid devel-
opment of nano-technology. 
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