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1. Introduction

There are currently various mobile communication
standards in use worldwide. Software-defined radio
(SDR) enables the creation of multi-standard termi-
nals, which can be flexibly used in various mobile
communication systems by simply rewriting their
software [1]. However, to be compatible with differ-
ent systems, the transceiver must be able to deal with
various frequency bands. It is difficult to make trans-
ceivers with a superheterodyne architecture compati-
ble with various systems, however, because such
transceivers have IF (Intermediate-Frequency) chan-
nel filters and image-rejection filters that cannot be
programmed to change the frequency band. In con-
trast, transceivers with a direct conversion architec-
ture do not require IF-channel filters or image-rejec-
tion filters because they convert RF (Radio-Frequen-
cy) signals directly to baseband signals [2]. Thus, the
direct conversion architecture is much more promis-
ing for designing a transceiver for SDR.

Transceiver components such as power dividers,
phase shifters, local oscillators (LOs), and amplifiers

must also be capable of wideband performance to
cover the frequency bands of various systems.
Although quadrature mixers using a 45º phase shifter
for direct conversion transceivers have been reported
[3], [4], there have been no reports of a 45º phase
shifter that is compatible with wideband transceivers.

In this paper, we report on a wideband RF chipset
for multi-band direct conversion transceivers that is
compatible with three systems; the personal digital
cellular (PDC), the PHS (Personal Handy-phone Sys-
tem) and the 2.4-GHz wireless LAN (WLAN). This
chipset is based on a design that incorporates a quad-
rature mixer, a low-noise variable gain-amplifier
(LNVGA), and a local oscillator [5]-[7]. We show
that these components are suitable for frequency-
widening applications in mobile transceivers and dis-
cuss the measurement results we obtained from
MMICs (Monolithic Microwave Integrated Circuits)
that we fabricated.

2. Transceiver configuration

Figure 1 shows a block diagram of the multi-band
direct conversion transceiver. The same type of quad-
rature mixer was used for both the demodulator and
the modulator. Therefore, they were able to share a
local oscillator. The target systems were PDC, PHS,
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and a 2.4-GHz WLAN. The first is an FDD (Fre-
quency-Division Duplexing) system and the second
and third are TDD (Time Division Duplexing) sys-
tems. Therefore, the target frequency range was from
0.9 to 2.5 GHz.

3. Quadrature mixer

The quadrature mixer consisted of two anti-parallel
diode mixers, a 45º power divider, an in-phase power

divider, and two differential amplifiers, as shown in
Fig. 2. Use of the direct conversion architecture had
two disadvantages: second-order distortion and DC
offset. However, it was possible to eliminate them by
using the anti-parallel diode mixers [8]. Such mixers,
which connect diodes that have the same characteris-
tics in parallel in reverse, do not output even-order
signals. Consequently, the second-order distortion
and DC offset equivalent to zero-order distortion
were suppressed. Moreover, the anti-parallel diode
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mixers are even-harmonic mixers, which use LO sig-
nals whose frequency is half that of the RF signals.
The mixers have a balanced configuration that
enables them to obtain RF-to-LO isolation in a wide
frequency range [9]. To generate in-phase and quad-
rature signals, we used a 45º phase shifter in the LO
power divider. Our design targets for amplitude bal-
ance and quadrature phase error were less than 2 dB
and 4º, respectively.

3.1   The 45º power divider
Figure 3(a) shows the circuit configuration of the

proposed 45º power divider, which included a com-
pensation capacitor (C1) and a compensation resistor
(R2). The 45º power divider consisted of a band-pass
filter and a high-pass filter using resistance-capaci-
tance networks. Phase θb(ω) of the band-pass filter,
which consisted of C1, C3, and R1, is given by

(1)

a = 1 + (Zs + R1) / Zl + C3 / C1,
b = (Zs + R1) × C3,
c = (Zl × C1).

Phase θh2(ω) of the high-pass filter, which consist-
ed of C2, R2, and R3, is given by

(2)

d = 1 + (Zs + R2) × (1/Zl + 1/R3),
e = (1/Zl + 1/R3) / C2.

Equation 1 shows that the phase characteristics of
the band-pass filter had one inflection point as a func-
tion of the frequency. Equation 2 shows that the phase
characteristics of the high-pass filter decreased
monotonically as a function of the frequency. There-
fore, because the phase difference between ports 2
and 3 in Fig. 3(a) had at most two extreme values, this
divider was capable of wideband performance.

Figure 3(b) shows the S-parameter simulation
results. The lumped passive elements were set so that
the amplitude difference was 0 dB and the phase dif-
ference was 45º at 1.0 GHz. The phase difference had
two extreme values. Hence, this divider exhibited
wideband performance.

3.2   In-phase power divider
Figure 4(a) shows the circuit configuration of the

in-phase power divider, which included a compensa-
tion capacitor (Cc). Under even-mode excitation, this
divider is a fifth-order high-pass filter. Thus, reflec-
tion characteristic S11 had at most two minimum val-
ues. Reflection characteristic S22 and isolation char-
acteristic S32 also had at most two minimum values.
This is because the resonant point increased as a
result of adding the compensation capacitor. This
divider thus satisfied the matching conditions at two
frequencies, which enabled it to also achieve wide-
band performance.

Figure 4(b) shows S-parameter simulation results
for the in-phase power divider. The lumped passive
elements were set so that the matching conditions
were satisfied at 0.8 and 1.2 GHz. The divider’s S11,
S22, and S32 each had two minimum values and thus
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Fig. 3.   45º power divider: (a) circuit configuration and (b) simulated S-parameters.
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satisfied the matching conditions at two frequencies,
which, again, enabled it to achieve wideband perfor-
mance.

3.3   Fabrication and measurement results
The wideband quadrature mixer was designed and

fabricated using a 0.3-µm GaAs MESFET (MEtal–
Semiconductor Field Effect Transistor) process with
ft = 20 GHz and fmax = 70 GHz. A photograph of the
chip is shown in Fig. 5. The size was 1.8 × 2.3 mm2. 

The measured amplitude balance and the quadra-
ture phase error of the output signals for demodula-
tion are shown in Fig. 6. The frequency of the base-
band signal was set at 144 kHz (not zero), the RF
power level at –20 dBm, and the LO power level at +5
dBm. When the RF signal frequency was between 0.9
and 2.5 GHz, the amplitude balance and the quadra-
ture phase error were less than 1.6 dB and 3º, respec-

tively.
We tested the modulation performance using the

single-side-band method, in which the image ratio
corresponds to the amplitude balance and the quadra-
ture phase error [10]. Figure 7 shows the RF output
power as a function of the frequency. A 144-kHz
baseband signal with a phase difference of 90º was
input. The frequency was converted into an RF signal
of frequency fRF based on the LO signal of frequency
fp = ( fRF – 144 kHz)/2. The input voltage of the base-
band signal was 500 mVp-p. The input level of the LO
signal was +5 dBm from 0.7 to 2.3 GHz and +10 dBm
at 2.4 GHz or higher. When the RF signal frequency
was between 0.9 and 2.5 GHz, the image ratio was
less than –30 dBc and the leakage signal level at fre-
quency 2fp was less than –40 dBm. This image ratio

Fig. 5.   Photograph of the quadrature mixer.
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indicates that the quadrature phase error was less than
3.6º if we assume an amplitude balance of 0 dB.

4. Low-noise variable-gain amplifier

The variable-gain amplifier controls the gain in the
IF stage of transceivers with a superheterodyne archi-
tecture. However, there is no IF stage in transceivers
with a direct conversion architecture. Consequently, a
gain-control mechanism was needed in the RF stage.
We therefore developed an LNVGA for that stage.
The design targets for the gain, noise figure, and vari-
able-gain control range were above 20 dB, below 4
dB, and above 30 dB, respectively.

Figure 8 shows its circuit configuration. To achieve
wideband characteristics, no matching circuits with
reactance elements were used. The amplifier used a
variable-feedback circuit that consisted of two ASFs
(Anti-Series FETs) and two capacitors. The ASF cir-
cuit remained unsaturated with input power greater
than the power which would cause a single FET to
saturate. As a result, the ASF circuit had lower dis-
tortion than a single FET [7]. Therefore, when the
amplifier’s gain was controlled, the amplifier was
capable of low distortion.

The LNVGA was fabricated using 0.15-µm GaAs
pHEMT (pseudomorphic High Electron Mobility
Transistor) technology and had two-stage amplifiers.
A photograph of the chip is shown in Fig. 9. The size
was 1.3 × 2.0 mm2. The measured gain response,
noise figure, and IP3 (3rd Intercept Point) are shown
in Figs. 10, 11, and 12, respectively. From 0.9 to 2.5
GHz, the maximum gain was more than 26 dB, the
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Fig. 9.   Photograph of the low-noise variable-gain amplifier.
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noise figure at the maximum gain was less than 3.1
dB, and the variable-gain control range was more
than 30 dB. Moreover, when the LNVGA gain was
changed, the OIP3 (Output IP3) remained almost
constant near the value before the change.

5. Local oscillator

Our goal was to build a local oscillator that would
be able to cover the frequency bands of the target sys-
tems shown in Table 1. This LO would require only a
few commercially available VCOs (Voltage-Con-
trolled Oscillators), and would have a tuning band-
width within 10% of the center frequency. The actual
LO, whose architecture is shown in Fig. 13, has only
two VCOs. Variable frequency dividers with four
SPDT (Single Pole Double Throw) switches were
also used. Phase noise was reduced by using frequen-
cy division. Thus, the phase noise requirements were
not severe. This architecture was able to cover all
three systems from 0.9 to 2.5 GHz, including the
FDD system. In the FDD settings, the target suppres-
sion level for the leakage signal was more than 50 dB. 

A block diagram of the variable frequency divider
is shown in Fig. 14. Dual-modulus prescalers and
selectors were used because programmable counters
cannot operate at high frequencies. The frequency
division ratios were 2, 3, 4, 5, and 6. The variable fre-
quency divider included an additional half frequency
divider that was used for PLL (Phase-Locked Loop)
input because many commercially available ICs for
PLLs operate at less than 2.5 GHz. The variable fre-
quency divider was fabricated using a silicon bipolar
process with ft = 35 GHz. A photograph of the chip is
shown in Fig. 15. The size was 2.0 × 2.0 mm2. The
fabricated variable frequency divider operated in the
frequency range of 100 MHz to 3.4 GHz when the
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input power was –10 dBm. This showed that it was
possible to achieve all the frequencies in Table 1. The
VCOs and the switches were commercially available
products. The tuning ranges of the two VCOs were
from 2.38 to 2.69 GHz and from 2.65 to 3.02 GHz
with a 3-V supply. The SPDT switches had 0.6 dB of
insertion loss and 40 dB of isolation from DC to 2.5
GHz.

Figure 16 shows the output spectrum of the local
oscillator at the RX port shown in Fig. 13 for the FDD
system settings. The leakage signal level of 478 MHz
was suppressed by more than 60 dB compared with

the desired signal level of 413 MHz.

6. Conclusion

We have developed an RF chipset for multi-band
direct conversion transceivers that covers the fre-
quency bands of three systems (PDC, PHS, and 2.4-
GHz WLAN). The chipset consists of a quadrature
mixer, an LNVGA, and a local oscillator. The mixer
achieves wideband performance through the use of
newly developed wideband power dividers. When the
RF frequency was between 900 MHz and 2.5 GHz,
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the demodulator mixer experimentally showed an
amplitude error of less than 1.6 dB and a quadrature
phase error of less than 3º. For the same RF frequen-
cy range, the modulator mixer showed an image ratio
of less than –30 dBc. The LNVGA achieves wide-
band performance without the use of reactance ele-
ments and displays highly linear performance
through the use of an anti-series FET feedback cir-
cuit. From 900 MHz to 2.5 GHz, the maximum gain
is more than 28 ± 1.6 dB, the noise figure at the max-
imum gain less than 3.1 dB, and the variable-gain
control range more than 30 dB. The local oscillator
achieves multi-band performance that is able to cover
the target frequencies for PDC, PHS, and 2.4-GHz
WLAN systems.

This approach should significantly contribute to the
development of compact multi-mode mobile trans-
ceivers such as software-defined radios.
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