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1. Introduction 

While cinema dominates the visual entertainment
field, digital cinema projection using the High Defin-
ition TV (HDTV) is making major inroads. To date,
however, the lower resolution of HD digital cinema
has prevented it from matching the image quality of
film [1]. The spatial resolution of 35-mm movie
(original negative*1) film exceeds one thousand scan-
ning lines [2]. Therefore, higher-quality digital cine-
ma systems are desired [3]. One approach to address-
ing this problem is Super High Definition (SHD)
images (resolution ≥2000 scanning lines), which sur-
pass the quality of 35-mm film in terms of spatial res-
olution and approach the quality of 60-mm film [4]. 

Against this background, we have developed an
SHD digital cinema system [5]-[7] that uses a 3840 ×
2048 pixel image format with 30-bit color separation
and 24 frames-per-second (fps) motion. The image
resolution obtained with this system is about four
times that of the 1080/24p format (1920 × 1080 pix-
els) used for HDTV, as shown in Fig. 1. Film-based
movie contents are digitized by scanning 35- or 65-
mm films, after which the resulting digital data is

compressed and stored. Transmitting movie contents
using public optical networks requires an exception-
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Fig. 1.   Resolution and frame rate of SHD image.
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*1 Original negative: The original negative is also called the camera
negative. There are three different basic types of 35-mm movie
film: camera negative, intermediate, and print. Camera negative
records as much detail as possible from the original scene, both
spatially and in light range to make that original detail eventually
available on a multitude of intermediate negatives from which are
produced thousands of release prints for projection.
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ally high-performance decoder and imaging system if
the movies are to be displayed in real time as they are
streamed. This is because the total bit rate of an SHD
movie can be as high as 5.7 Gbit/s, so the movies
need to be compressed by 10:1 or more to transmit
them via envisioned wide-area optical IP networks
using gigabit Ethernet (GbE). Additionally, an SHD
real-time decoder and SHD projection device will be
required at the SHD digital cinema. The high-speed
optical networks will distribute the contents of VOD
(video-on-demand) servers to wherever the SHD
real-time decoders and projectors have been installed.

2. SHD digital cinema distribution system

Our SHD digital cinema distribution system,
shown in Fig. 2, comprises three main devices: a real-
time decoder, an SHD projector, and a movie server.

2.1   JPEG2000 real-time decoder
We have developed a hardware JPEG2000 decoder

using an IA-32-based Linux personal computer (PC).
Four JPEG2000 decoder boards are installed on the
64-bit PCI-bus of the PC. Each board has 30
JPEG2000 processors (Analog Devices Inc. ADV-
JP2000) that process a quarter (1920 × 1024 pixels)
of the whole image area. The decoder can decom-
press data in real time at a speed of 48 fps for 3840 ×
2048 pixel 30-bit color images (i.e., 400 megapixels
per second), using 120 JPEG2000 processors work-
ing in parallel. A control program running as an
application consists of two threads with dual CPUs

(two 1.44-GHz Pentium IIIs) that share the PC’s main
memory as a large data buffer. The decoder receives
the JPEG2000-coded data stream from the movie
server via the GbE network interface and decodes it
quickly enough for real-time projection.

2.2   SHD D-ILA projector
The SHD projector uses three prototype eight-

megapixel (3840 × 2048 pixel) D-ILA devices
(reflective LCD panels) produced by JVC, one for
each 10-bit RGB (red, green, blue) color channel. Its
1600-W xenon lamp gives an effective brightness
exceeding 3000 ANSI lumens, which is bright
enough to show images on a 300-inch (diagonal)
screen. We consider that the horizontal resolution of
3840 pixels will cover almost all image applications
and enable us to fully utilize the vertical resolution of
2048 pixels even if the movie has a wide aspect ratio.
The 30-bit color depth eliminates pseudo-edges that
may be perceived on the gradation pattern of comput-
er graphics based images. The high refresh rate (96
Hz) of the projectors completely eliminates flicker
and is compatible with 24-fps movies. Every frame of
the decoder output is simply displayed four times in
the projector, without any interpolation between adja-
cent frames.

2.3   Movie server
The movie server is an IA-32-based Linux PC with

dual CPUs (two 1.44-GHz Pentium IIIs) and has a
high-performance RAID0*1 system. The movie con-
tent is digitized (3840 × 2048 pixels and 8- or 10-bit
RGB per pixel) from 35-mm film by using the high-
est quality pin registered film scanner (IMAGICA
Corp., ImagerXE). The film-digitized or computer-
generated movie data is (1) divided into 128 × 128
pixel image tiles, (2) converted into YCbCr (4:2:2)
color components, (3) compressed/encoded by a suit-
able data-format for the decoder, and (4) made into
one big file bringing 1000 frames together as a unit
that is stored in the server’s RAID. The server pro-
gram that receives the data transfer command reads
the data from the RAID and then periodically writes
it to the GbE network interface.

3. Internet2 digital cinema transmission trial

The fall 2002 Internet2 members meeting was held
on October 28-29, 2002 at the University of Southern

         Generation Internet

Fig. 2.   Overview of SHD digital cinema distribution system.
From the front left: server, GbE-switch, and real-time

decoder; at the rear: projector.
*1 RAID: redundant arrays of inexpensive disks.

RAID0: striping mode.
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California (USC). During this meeting, we performed
an SHD digital cinema distribution (TCP/IP-based
SHD digital cinema streaming) experiment linking
Chicago and Los Angeles via the Internet2 network
[8]. This was the world’s first long-distance transmis-
sion of an SHD digital cinema data stream. We used
the TCP/IP protocol to stream the digital cinema con-
tents, but with this protocol the network throughput
temporarily falls if one or more packets end up being
dropped so that they must be re-transmitted. To main-
tain continuous projection if such a network stall
occurs, the decoder spools the received data stream
(4–8 s of movie data) in memory. 

3.1   Network configuration
The network configuration is shown in Fig. 3. We

set up the server in the Electronic Visualization Lab-
oratory (EVL) at the University of Illinois, Chicago
(UIC). The decoder and projector were installed at
the Robert Zemeckis Center of the School of Cinema-
Television at the University of Southern California
(USC), Los Angeles. UIC and USC were connected
to the Internet2 network. A bit stream of SHD movie-
data, originating from the server at the EVL, was
transmitted over the backbone network containing a
GbE switch (OptiSwitch 4000 of MRV Communica-
tions, formerly Zuma Networks) etc., and projected at
the Robert Zemeckis Center. The distance between
the server and decoder was more than 3000 km and
there were seven router hops between them. The

round trip time (RTT) of the network was measured
to be 59 ms. 

3.2   Technique for long-distance distribution 
We used (1) a large TCP window, (2) multiple TCP

connections between the server and decoder, and (3)
a shaping control function that depended on the data
transmission quantity to improve the throughput of
the long-distance TCP transmission. These are
explained in detail below.
(1) Enlarged TCP window 

The TCP window size is the amount of data that
can be sent without acknowledgment. There are
theoretical limitations to TCP-window-based flow
control. The theoretical TCP throughput is

TCP throughput < window size ÷ RTT.

Therefore, the configuration guideline is

window size > required TCP throughput × RTT.

Initially, the TCP window size of the system was
extended to 4 MB from its initial 64 KB value.
Accordingly, the theoretical throughput became
about 540 Mbit/s for an RTT of 59 ms and window
size of 4 MB. (For comparison, the theoretical
throughput for a 64-KB TCP window is about 8.5
Mbit/s.) In a preliminary test, however, a stream
transmission of 100 Mbit/s or more proved to be

SNVA-NG
T640

LOSA-NG
T640

OC-192 POS

OC-192 POS

10GbE

GbE GbE 10GbE

MRV
OptiSwitch 4000

StarLight
Cisco 6509

CHIN-NG
T640

OC-192
POS

UIC/EVL

NTT
server

IPLS-NG
T640

OC-192 POS

KSCY-NG
T640

USC
Zemeckis Center

MRV
OptiSwitch 4000

GbE
GbE/

OC-48 POS

USC
Cisco 12404 at UCC

USC
Foundry 8000 at UCC

10GbE

10GbEUSC
Foundry 8000

· · · Router

· · · Switch

SHD projectorNTT real-time
decoder

One Wilshire

Sunnyvale

Chicago

IndianapolisKansas City

Los Angeles

Fig. 3.   Internet2 experimental network configuration.
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impossible, although a stream transmission of 50
Mbit/s was possible. 

(2) Use of multiple TCP connections
We transmitted streams while increasing the

number of TCP connections between the server and
decoder when the initial TCP window size was 4
MB. The server application divided the movie data
into equal segments and sequentially wrote them to
multiple TCP sockets connected to the decoder.
Throughput increased with the number of TCP con-
nections. Table 1 shows the success or failure for
various bit rates and TCP connection numbers. A
200-Mbit/s stream transmission was possible with
64 TCP connections. However, it did not go up as
expected from the theoretical value, and hit a ceil-
ing at about 200 Mbit/s. The stream’s bit rate could
not be raised even when the number of connections
was increased beyond 64. As the 200-Mbit/s movie
data did not have the quality of the original/master
35-mm film, we had to find another way to improve
the throughput further.

(3) Traffic shaping/smoothing
We used an application traffic monitor (a product

of NTT Labs., available from Anritsu Co as
MD1230A-20) to observe the traffic pattern with a
resolution of 1 ms. The data transmission was very
bursty, and the biggest peak exceeded 800 Mbit/s,
as shown in Fig. 4. We expected that a momentary
peak rate of 800 Mbit/s or higher would be a prob-
lem. A preliminary experiment that used UDP/IP
(UDP: user datagram protocol) showed that packet
loss would occur if the call transfer rate exceeded
800 Mbit/s in the Internet2 network. 

To suppress the burstiness, we built a shaping
control function for the data transmission into the
socket writing process of the server application.
The application divides the data stream after mak-
ing a multiple TCP connection between the server
and decoder, and writes the divided data segments
into each socket gradually by adding a waiting time,
as shown in Fig. 5. It was necessary to add a suit-
able waiting time when a single movie data frame
was sent during a 1/24-s cycle. As a result, the large
peaks could be eliminated, as shown in Fig. 6. We
thus chose a TCP window size of 4 MB as the ini-
tial value, and transmitted movie data at an average
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Fig. 4.   Example of application traffic monitor outputs (without traffic shaping).
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Table 1.   Results of multiple TCP connection trials.
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speed of 300 Mbit/s via 64 TCP streams with shap-
ing control (indicated by the circle in Fig. 7). 

3.3   Lessons learned 
Figure 7 shows the results of the trials in regard to

measures (2) and (3) described above. In using an
SHD digital cinema for TCP transmission over high-
speed, long-distance networks, we found that:

• a single TCP connection is likely to have poor
performance

• the cause of the poor performance is packet loss
(or potentially other causes)

• multiple TCP connections and traffic shaping let
us transmit movie data successfully, but we are
not completely sure why.

A complete analysis was impossible because of the
lack of time (the Internet2 experiments lasted only a
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Fig. 5.   Traffic shaping by server application.
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few days). However, the network’s instability and
poor controllability were probably the cause of the
problems we encountered.

4. Conclusion

We have developed a digital cinema distribution
system offering SHD image quality (3840 × 2048
pixels) that can transmit digital cinema contents with
the quality of the original 35-mm film. The system
requires high-quality connections between the server
and decoder that can provide sustainable bandwidth
without significant packet loss, delay, or jitter. The
transmission of SHD movie data from a remote serv-
er to a distant decoder without interruption can only
be accomplished over a long-distance network with
sufficiently high capacity and quality of service. We
performed a long-distance (i.e., long delay) stream-
ing transmission experiment that involved three mea-
sures designed to improve transmission stability and
successfully achieved stable SHD digital cinema
streaming despite the long delay. The three measures
were using a larger TCP window, multiple TCP con-
nections, and a shaping function to control the data
transmission quantity. The suppression of burstiness
demonstrated in this trial won high praise from par-
ties associated with the Internet2 Members Meeting
and USC’s School of Cinema-Television. The results
we obtained boost the idea that SHD digital cinema
can be distributed anywhere at any time.

Quantitative evaluations/analyses of the throughput
in terms of RTT, TCP window size, and TCP connec-
tion number remain subjects of future study. We are
currently refining the performance of the decoder to
achieve higher image coding quality and to meet the
various network bandwidth requirements.
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