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1.   Introduction

One of the key concepts of future network services
is ubiquitous services, which provide various infor-
mation and physical interactions to users anywhere
and anytime. Ubiquitous services will be provided in
a variety of network environments, such as peer-to-
peer (P2P) networks and mobile ad-hoc networks.
P2P networks are overlay networks over the Internet,
and generally consist of user nodes throughout the
entire Internet and their logical links. Mobile ad-hoc
networks are collections of user nodes with wireless
devices, and each user node forwards packets that are
destined for other nodes using ad-hoc routing proto-
cols. P2P networks can be formed over mobile ad-hoc
networks. User nodes of P2P networks or mobile ad-
hoc networks are free to join or leave these networks,
so these networks appear anytime and anywhere user
nodes exist and can communicate with each other.
However, these network topologies tend to change
frequently, and one cannot assume that any fixed
nodes exist in these networks. We call these dynami-
cally changing networks “ubiquitous networks”.

In ubiquitous networks, we cannot use a fixed stor-

age server, so we need storage systems that are avail-
able anywhere and anytime. Ubiquitous storage sys-
tems must be available even when some nodes or
links in the ubiquitous network fail. One ubiquitous
storage system is DHash/Chord, which is being
developed mainly for P2P networks. It provides a
highly available storage system in ubiquitous net-
work environments. Part of DHash/Chord was devel-
oped within the MIT-NTT collaboration framework.

Another ubiquitous storage system is being devel-
oped in NTT Network Innovation Laboratories for
ad-hoc networks and for flexible data consistency
management. It uses a refined version of the primary
copy replication technique to achieve strict consisten-
cy in distributed data. 

In this paper, we overview these two ubiquitous
storage systems, which help to make ubiquitous ser-
vice provision easy. They also work effectively if
applied together.

2.   DHash/Chord

DHash/Chord uses a distributed hash table to store
the relationships between keys and their values in a
distributed manner. DHash stores and retrieves
uniquely identified data blocks and handles their dis-
tribution, replication, and caching. To locate blocks,
DHash uses Chord [1], which is a P2P lookup service
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that finds a node holding the value identified by a
given key (Fig. 1).

In this section, we first review Chord and then move
onto DHash using Chord. We can use DHash/Chord
as a building block of a file storage system. For exam-
ple, Ivy [2] and CFS (Cooperative file system) [3]
provide NFS-like file system interfaces to users.
(NFS: Network File System) 

2.1   Chord
Chord supports just one operation: given a key, it

will determine the node responsible for that key.
Chord does not store keys or values itself, but pro-
vides primitives that allow higher-layer software to
build a wide variety of storage systems.

(1) Consistent hashing
Each Chord node has a unique m-bit node identifi-

er (ID), obtained by hashing the node’s IP address.
Chord views the IDs as occupying a circular identifi-
er space. We call this circular space a “Chord ring”
(Fig. 2). Keys are also mapped into this Chord ring,
by hashing them to m-bit key IDs. Chord defines the
node responsible for a key to be the successor of that
key’s ID. The successor of an ID is the node with the
smallest ID that is greater than or equal to it (with
wrap-around), much as in consistent hashing [4]. The
implementation of Chord uses SHA-1 for the consis-
tent hash algorithm and a 160-bit-wide Chord ring. 

Consistent hashing lets nodes enter and leave the
network with minimal movement of keys. To main-
tain correct successor mappings when a node n joins
the network, certain keys among those previously
assigned to n’s successor become assigned to n.
When node n leaves the network, all of its assigned
keys are reassigned to its successor. No other changes

in key assignment to nodes are needed. 
Consistent hashing is straightforward to imple-

ment, with constant-time lookups if all nodes have an
up-to-date list of all other nodes. However, such a
system does not scale. Chord provides a scalable, dis-
tributed version of consistent hashing. 

(2) Chord’s lookup algorithm
A Chord node uses two data structures to perform

lookups: a successor list and a finger table. Only the
successor list is required for correctness, so Chord is
careful to maintain its accuracy. The finger table
accelerates lookups, but does not need to be accurate,
so Chord is less concerned about maintaining it. The
following discussion first describes how to perform
correct (but slow) lookups with the successor list, and
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then describes how to accelerate them up with the fin-
ger table. 

Every Chord node maintains a list of the IDs and IP
addresses of its r immediate successors on the Chord
ring. The fact that every node knows its own succes-
sor means that a node can always process a lookup
correctly: if the desired key is between the node and
its successor, the latter node is the key’s successor;
otherwise the lookup can be forwarded to the succes-
sor, which moves the lookup strictly closer to its des-
tination. A new node n learns of its successors when
it first joins the Chord ring by asking an existing node
to perform a lookup for n’s successor; node n then
asks that successor for its successor list. The r entries
in the list provide fault tolerance: if a node’s immedi-
ate successor does not respond, the node
can substitute the second entry in its suc-
cessor list. All r successors would have to
fail simultaneously to disrupt the Chord
ring; an event that can be made very
improbable by using modest values of r. An
implementation should use a fixed r, cho-
sen to be 2 log2 N for the foreseeable maxi-
mum number of nodes N.

The main complexity involved with suc-
cessor lists lies in notifying an existing
node when a new node should be its suc-
cessor.  The stabi l izat ion procedure
described in [1] does this in a way that guar-
antees to preserve the connectivity of the
Chord ring’s successor pointers.

Lookups performed only with successor
lists would require an average of N/2 mes-
sage exchanges, where N is the number of

nodes. To reduce the number of required messages to
O (log N), each node maintains a finger table with m
entries. Figure 3 shows an example of a finger table.
The ith entry in the table at node n contains the ID of
the successor of n+2i–1 on the Chord ring. Thus every
node knows the IDs of nodes at power-of-two inter-
vals on the Chord ring from its own position. A new
node initializes its finger table by querying an exist-
ing node. Existing nodes whose finger table or suc-
cessor list entries should refer to the new node find
out about it by periodic lookups.

Figure 4 shows pseudo-code for looking up the suc-
cessor of identifier id. The main loop is in find_pre-
decessor, which sends preceding_node_list remote
procedure calls (RPCs) to a series of other nodes;
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Fig. 3.   Example of a finger table and its lookup.

// Ask node n to find id ’s successor; first finds id ’s predecessor,
// then asks that predecessor for its own successor. 
n. find_succcessor (id )

n' = find_predeccessor (id );
return n'.successor ();

// Ask node n to find id ’s predecessor.
n. find_predecessor (id )

n'= n;
while (id ∉ (n', n'. successor()]);

l = n'. preceding_node_list (id );
n' = max n'' ∈ l s.t. n'' is alive

return n';

// Ask node n for a list of nodes in its finger table or
// successor list that precede id.
n. preceding_node_list (id )

return { n' ∈ { fingers ∪ successors} s.t. n' ∈ (n, id ]}  

Fig. 4.   Pseudo-code for finding the successor of id.
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each RPC searches the tables of the other node for
nodes that are even closer to id. Because finger table
entries point to nodes at power-of-two intervals
around the Chord ring, each iteration will set n’ to a
node halfway on the Chord ring between the current
n’ and id. Since preceding_node_list never returns an
ID greater than id, this process will never overshoot
the correct successor. It may undershoot, especially if
a new node with an ID just before id has recently
joined; in that case the check ensures that find_pre-
decessor persists until it finds a pair of nodes that
straddle id.

2.2   DHash
DHash is a distributed hash table that works on top

of the Chord lookup service. It maps keys to arbitrary
values and stores each key/value pair on a set of nodes
determined by hashing the key. This paper refers to a
DHash key/value pair as a DHash block. DHash uses
Chord to find a node holding a block identified by a
given key and replicates blocks to avoid losing them
if nodes crash.

DHash ensures the integrity of each block with one
of two methods (Fig. 5). A content-hash block
requires the block’s key to be an SHA-1 hash of the
block’s value (i.e., contents); this allows anyone
fetching the block to verify the value by ensuring that
its SHA-1 hash matches the key. A public-key block
requires the block’s key to be an SHA-1 hash of a

public key, and the value to be the content signed with
the corresponding private key. DHash refuses to store
a value whose key does not match. Clients check the
authenticity of all data they retrieve from DHash.
These checks prevent a malicious or buggy DHash
node from forging data. Table 1 shows the application
programming interface that DHash exposes.

Applications of DHash can use a public-key block
as a root block of their application data; the root block
holds pointers (IDs) to other blocks that store actual
content of data or meta data such as filenames. CFS
[3] is an example of such an application; it builds a
file system that has an i-node metadata structure sim-
ilar to the UNIX file system.

(1) Block replication
DHash replicates each block on k nodes to increase

availability, maintains the k replicas automatically as
nodes come and go, and arranges replicas so that
clients can easily find them. It places a block’s repli-
cas at the k nodes immediately after the block’s suc-
cessor on the Chord ring (Fig. 6). It can easily find the
IDs of these nodes from Chord’s r-entry successor
list. DHash must be configured so that r ≥ k.

This placement of replicas means that, after a
block’s successor node fails, the block is immediate-
ly available at the block’s new successor. The DHash
software in a block’s successor node manages the
replication of that block by making sure that all k of
its successor nodes have a copy of the block at all

Content-hash block:

One can verify the value by hashing
 the contents and comparing with the key.

Public-key block:

DHash refuses to store if the contents do 
not match the sign. The corresponding 
public key is used to validate the matching.

Key

Key

Value

SHA-1

SHA-1
Public key

Sign with
private key
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20 content

content

Fig. 5.   Two kinds of DHash blocks.

Function Description

Computes the block’s key by hashing its contents and sends it to the key’s successor node for storage.

Stores or updates a public-key block; used for root blocks. The block must be signed with the private 
key corresponding to the public_key. The block’s key will be the hash of the public_key. 

Fetches and returns the block associated with the specified key.

put_h(block)

put_s(block, public_key)　

get(key)

Table 1.   DHash client application programming interface.
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times. If the successor node fails, the block’s new
successor assumes responsibility for the block.

The usefulness of this replication scheme depends
partially on the independence of failure and unreach-
ability among a block’s k replica nodes. Nodes close
to each other on the Chord ring are not likely to be
physically close to each other, since a node’s ID is
based on a hash of its IP address. This provides the
desired independence of failure.

(2) Block caching
DHash caches blocks to avoid overloading nodes

that hold popular data. Each DHash node sets aside a
fixed amount of disk storage for its cache. When a
DHash client looks up a block key, it performs a
Chord lookup, visiting intermediate DHash nodes
with IDs successively closer to that of the key’s suc-
cessor. At each step, the client asks the intermediate
node whether it has the desired block cached. Even-
tually the client arrives either at the key’s successor or
at an intermediate node with a cached copy. The
client then sends a copy of the block to some of the
nodes it contacted along the lookup path.

Since a Chord lookup takes shorter and shorter
hops in the Chord ring as it gets closer to the target,
lookups from different clients for the same block will
tend to visit the same nodes late in the lookup. As a
result, the policy of caching blocks along the lookup
path is likely to be effective.

DHash replaces cached blocks in least-recently-
used order. Copies of a block at nodes with IDs far
from the block’s successor are likely to be discarded
first, since clients are least likely to stumble upon
them. This has the effect of preserving the cached
copies close to the successor, and expands and con-
tracts the degree of caching for each block according
to its popularity.

DHash avoids most cache consistency problems
because content hash blocks are keyed by hashes of
their content, so each identified block is immutable.
Public-key blocks, however, use public keys as iden-
tifiers; a publisher can change a block by inserting
new content signed with the corresponding private
key. This means that caches of signed public-key
blocks may become stale, causing some clients to
read old data. 

3.   CAOSS

NTT is now developing CAOSS (Circumstances
Adaptive Online Storage System), an online distrib-
uted storage system that uses arbitrary nodes, such as
servers and user terminals, on a network for storage.
It uses a refined version of the primary copy replica-
tion technique [5], which is adjusted to changes in
circumstances in ubiquitous networks; i.e., replicas
have different lifetimes. Moreover, it provides two
kinds of policies for maintaining data consistency. 

3.1   Components
CAOSS consists of the following elements (Fig. 7).

They exist in arbitrary nodes; i.e., PC, server, PDA,
etc.
• Depot: A set of data. It is identified by a depot iden-

tifier (DID), which is unique in a network.
• CD (Core Depot): A depot with the authority to per-

form updating. Only one CD per DID exists in a
network.

• RD (Replicated Depot): A depot that can only be
read by clients. Zero or more RDs may exist within
a network for each DID. 

• SRD (Strictly Consistent Replicated Depot): An
RD whose data is strictly consistent with the corre-
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Fig. 6.   Block replication of DHash.
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sponding CD.
• WRD (Weakly Consistent Replicated Depot): An

RD whose data may differ from that of the corre-
sponding CD because the CD has been changed
(i.e., data in WRDs may be old).

• Cmgr (CAOSS manager): An agent that receives
client requests and manages distributed replicas of
depots (i.e., CDs and RDs). 

• Client: An agent that uses CAOSS to access data.

3.2   Management of depots
In CAOSS, the depot generating, updating, and

reading processes are performed as follows. A Cmgr
generates a CD when a new depot is needed. Clients
can save data in the depot after it has been generated
(Fig. 8). 

When a Cmgr receives a request to read data in a

depot, if it does not have the CD or RD of the depot,
it reads the data from the Cmgr managing the CD and
responds to the request. After that, an RD is created
in that node and the RD’s lifetime is set (Fig. 8). The
RD is either an SRD or WRD depending on the
client’s read request; if the read request required the
newest data, the RD should be SRD. If the request
required fast data access, the RD should be WRD.

When a Cmgr receives a request to update data in a
depot, if it has the CD, it negotiates with all the
Cmgrs managing SRDs. Then, the Cmgr of the CD
performs the update, and reflects it in SRDs (Fig. 9).
After that, it is possible to read the newest data from
SRDs. This process is done according to the primary
copy replication technique [5]. If the update suc-
ceeds, the Cmgr reports the update to the Cmgrs man-
aging the WRDs, though this information might not
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An RD may be an SRD or WRD. 

: Cmgr: CD : RD

“a” “b” “c” “d”
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Fig. 7.   CAOSS components.
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be received by the Cmgr because of network failure.
When a Cmgr receives a request to update data in a

depot, if it does not have the CD, it sends an updating
request to the Cmgr managing the CD, which updates
the depot as described above. If the update succeeds,
the first Cmgr negotiates with the second Cmgr to
move the CD. This movement may not occur in some
network situations or for some user access frequen-
cies.

Even if Cmgrs cannot communicate with each other
because of a network topology change, clients can
still read the newest data from an SRD until its life-
time expires. However, even in a node with a CD, data
updating in this depot cannot be performed until the
SRD’s lifetime has expired. The Cmgr makes an SRD
invalid if its lifetime expires before it can communi-
cate with the Cmgr that manages the CD. After that,
the Cmgr that manages the CD can update the depot
by cooperating with the Cmgrs that manage SRDs.

Thus, we can prevent a fall in availability of updat-
ing and reading data with SRDs in ubiquitous net-
work environments by moving a CD to the node that
updates the data in the corresponding depot and inval-
idating inappropriate SRDs. WRDs can improve the
availability of reading without affecting the updating
availability.

4.   Relationship between DHash/Chord and
CAOSS

In CAOSS, a client asks a Cmgr to access data in a
depot. If the Cmgr does not know the CD’s location,
it must discover it. However, in a ubiquitous network
environment we cannot assume the existence of a

centralized server that could tell Cmgr the CD’s loca-
tion. Chord solves this problem: the Cmgr asks Chord
using DID as a key and tells Cmgr the CD’s location
(Fig. 10(a)).

Moreover, a Cmgr of a CD can save its backup in
DHash and report its key to a Cmgr that manages the
corresponding RD. Thereafter, the latter Cmgr can
retrieve the CD in case the former Cmgr becomes
unavailable (Fig. 10(b)). This can improve the avail-
ability of a depot, but the precise mechanism is for
further study.

5.   Conclusion

This paper overviewed two ubiquitous storage sys-
tems, DHash/Chord and CAOSS. We think that they
will make future ubiquitous services practical and
easy to develop. Part of DHash/Chord was developed
within the framework of MIT-NTT collaboration.
NTT is now evaluating the performance of CAOSS
by simulation and by testing a prototype system to
confirm its feasibility and is considering connecting
DHach/Chord and CAOSS.
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