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1.   Introduction

Recent rapid progress in silicon CMOS (comple-
mentary metal oxide semiconductor) LSIs (large-
scale integrated circuits) has made possible highly
sophisticated information processing and communi-
cation tools, such as personal computers and cellular
phones, which enable us to process a great deal of
information. This progress is enabled by the minia-
turization of Si MOS transistors, which proceeds
according to Moore’s law. Figure 1 shows predicted
feature sizes of transistors. Within 15 years, the device
size will be on the nanometer order [1]. However,
higher levels of integration produce greater power
dissipation in a small Si chip. Even now, the power
consumption of some microprocessor chips used in
personal computers is more than 50 W. This rise in
power will suppress further integration, which will
limit the functionality of information processing and
communication tools. That is to say, the device tem-
perature cannot exceed the cooling limit. In addition,
for mobile applications, which are going to become
more widespread and important, we must extend bat-
tery life [2]. Therefore, we must develop new devices

for future information technology that enable us to
achieve low power consumption as well as high func-
tionality. Single-electron devices (SEDs) are the key
to minimizing power consumption because they can
control the transfer of individual electrons [3]-[5]. In
addition, such devices have high functionality that
conventional transistors do not have; for example,
they can support multiple gates and exhibit conduc-
tance characteristics that oscillate as a function of
gate voltage. We can exploit these special features to
achieve high performance with low power dissipation.
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Fig. 1.   Gate lengths of MOSFETs predicted in
International Technology Roadmap for
Semiconductors [1].
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2.   Single-electron transistor (SET) 

The most primitive SED [6], [7] has a simple three-
terminal structure, as shown in Fig. 2. The device
must have a small island together with a gate elec-
trode coupled to the island with gate capacitance Cg.
Source and drain electrodes are attached to the island
via a tunnel barrier. Due to the three-terminal struc-
ture, we call this device a single-electron transistor
(SET). 

The operating principle of the device is based on
the balance of charge between the gate electrode and
the island. When the source and drain terminals are
grounded for simplicity, and when a voltage Vg is
applied to the gate, charge CgVg accumulates in the
gate electrode. However, since tunnel barriers isolate
the island from the source and drain, the number of
electrons in the island should be a fixed integer. The
total charge in the island –Ne, where N is the number
of electrons and e the elementary charge, is balanced
with that in the gate when CgVg = Ne is satisfied. In
this condition, the number of electrons is stable, so N
cannot change. That is, current does not flow through
the SET island. This is the Coulomb-blockade condi-
tion. As the gate voltages increase, the total charge in
the gates increases, and the charges become unbal-
anced. Then, when CgVg = (N+1/2)e, the electrostatic
potentials of two states (for N and for N+1 electrons)
become equal, which means that the island can con-
tain either N or N+1 electrons. Therefore, electrons
flow one at a time when a small voltage is applied
between the source and drain electrodes. The number
of electrons in the island is N+1 after a single electron
tunnels from the source to the island. The number
returns to N after an electron tunnels from the island
to the drain. When this sequence is repeated, a current
due to single-electron tunneling flows. If the gate
voltages increase further, the number of electrons
becomes stable at N+1. As a result, the source-drain
conductance oscillates as a function of gate voltages,
as shown in Fig. 3. 

For a SET to operate at high temperature T, the

island should be small to maintain the Coulomb
blockade condition, i.e., e2/(2Ctotal) > 3.5 kT, where
Ctotal is the total capacitance of the SET island.  The
SET island must be smaller than 10 nm for room-tem-
perature operation. The most difficult issue in fabri-
cating such a SET is attaching two tunnel capacitors
to the nanometer-scale island. We have already devel-
oped a controllable fabrication method called pattern-
dependent oxidation (PADOX) [8]-[10], which con-
verts a small Si wire pattern on an SOI (silicon on
insulator) wafer into a single-electron island with a
tunnel capacitor at each end. In this method, special
phenomena that occur during the oxidation of Si
nanostructures on SiO2 play a crucial role.  

3.   SET fabrication by PADOX 

The operating principle of the SET allows us to use
any conductive material—metal or semiconductor—
as a base material. Among the available materials, sil-
icon is one of the best candidates because we can uti-
lize sophisticated fabrication processes developed for
recent CMOS LSIs. In addition, the Si/SiO2 system is
the most reliable one, as demonstrated in Si LSIs. 

PADOX [8]-[10] uses thermal oxidation, which is
well known as the most dependable and simplest
method of obtaining a stable Si/SiO2 interface. The
initial structure of the SET is a narrow, short one-
dimensional Si wire fabricated on a thin SOI wafer as
shown in Fig. 4. The typical wire width is about 30
nm. The wire height, which is the thickness of the
SOI layer, is also about 30 nm. The wire length is var-
ied to control the island size. The SET fabrication
mechanism is as follows. When a narrow Si wire is
thermally oxidized in dry oxygen ambient, the oxida-
tion is suppressed due to the huge stress accumulated
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Fig. 2.   Schematic structure and equivalent circuit of a SET.
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Fig. 3.   Gate-voltage vs. drain current characteristics of a  SET.
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in the grown SiO2, which completely surrounds the
wire. It has been reported that a compressive stress
larger than 20,000 atm accumulates in the SiO2 when
a 10-nm-diameter Si wire is formed by oxidizing a
30-nm-diameter Si wire [11]. When the Si wire struc-
ture shown in Fig. 4 is subjected to thermal oxidation,
a compressive stress is exerted on the middle part of
the wire. The 20,000-atm stress produces strain in the
wire and reduces the bandgap by about 150 meV. This
reduction cancels out the effective bandgap increase
of about 50 meV due to the quantum size effect in a
5–10-nm Si wire [12], [13]. As a result, the potential
profile is as schematically shown in Fig. 5. The two
potential hills serve as tunnel barriers: a tunnel capac-
itor is formed between the Si island and the wider Si
layer. This mechanism enables us to make a SET in a
self-aligned manner.

The typical electrical characteristics of an Si SET
fabricated by PADOX are shown in Fig. 6. The con-
ductance or current varies depending on the number
of electrons in the SET island, which is different from
the characteristics shown in Fig. 3. The reason is as
follows. In the case of SETs fabricated from a semi-
conductor, since there are only a few electrons in the
island, the wave function distribution changes
according to the number of electrons, which affects
the tunnel resistance. This is one of the phenomena in
a few-electron regime. It is quite interesting to inves-
tigate SETs from the physics viewpoint because
quantum effects play an important role in 10-nm-
sized Si islands [14]. In this report, however, we focus
on the device application of SETs.

It has generally been said that the greatest draw-
back of SETs is that the operating characteristics
sometimes change due to the offset charge effect.
However, SETs fabricated by using Si MOS process-
es are definitely stable against long-term drift, which

is essential if they are actually to be used [15], [16].
We have confirmed that the characteristics shown in
Fig. 6 did not change over a seven-year period. This
is the great advantage of Si SETs [7].

4.   Logic circuit application of SETs

SEDs have two main applications: memory and
logic circuits. Since their most prominent feature is
low power operation, the application to logic circuits
seems the most promising. Low power operation is
essential to future logic LSIs, in which power dissi-
pation will limit integration levels. In addition,
devices for future LSIs should be small to achieve a
high integration density as well as low power con-
sumption [7]. As discussed above, the operating prin-
ciple based on the Coulomb blockade allows the
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Fig. 4.   Initial device structure of the SET before PADOX.
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Fig. 5.   Schematic plane view of the device and potential
diagram along the Si wire.
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Fig. 6.   Drain current vs. gate-voltage characteristics
measured at drain voltage of 1 mV.
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device to operate more stably as it becomes smaller.
This is the opposite of the situation in MOSFETs,
where a smaller size creates undesirable characteris-
tics, such as punch through or gate leaks.

In addition, SETs have several other special fea-
tures that conventional transistors (MOSFETs and
bipolar transistors) do not have. As described above,
the drain current or conductance shows oscillatory
characteristics according to the number of electrons
in the island. Another special feature is that the oper-
ating principle lets the device support multiple gates.
Some SET logic circuits fabricated using PADOX, in
which these features are exploited, are discussed
below.

4.1   Multigate SET
SETs inherently have multiple gates as shown in

the equivalent circuit in Fig. 7. Each gate electrode
couples directly to the SET island with gate capaci-
tance Cgi. As described in section 2, since the total
charge accumulated in gates is ∑CgiVgi, the drain cur-
rent oscillates as a function of ∑CgiVgi. These charac-
teristics give SETs two special features. One is that
the source-drain current is determined by the sum of
the products of each gate capacitance Cgi and gate
voltage Vgi. The other special feature of the SET is
oscillatory characteristics. The periodically oscillat-
ing current characteristics are useful to achieve peri-
odical functions, such as adder or parity check cir-
cuits, which are widely used in current logic circuits.
As described in section 2, the drain current is mini-
mum when the sum ∑CgiVgi/e is an integer. Con-
versely, when the sum is a half integer, the current is
maximum. Conventional devices do not have these
kinds of features. 

If all gate capacitances (Cgi) of the SET are the
same Cg0, and if we use an input voltage (Vgi) for
high-level e/(2Cg0), we can obtain the functions of a
multi-input exclusive-OR gate. Each high input-gate
can switch the current level from high to low and vice
versa. This means that an even number of “HIGH”
gates creates the “LOW state” and an odd number
creates the “HIGH state”. This is exactly the function
of the Exclusive-OR (XOR) gate in a binary logic cir-
cuit. We fabricated such a device having two equal
gates [17]. SEM images of the device are shown in
Figs. 8(a) and (b). A small one-dimensional Si wire
fabricated on an SOI wafer (Fig. 8(a)) was converted
into a small SET by PADOX. Then, using an elec-
tron-beam exposure system with a high overlay accu-
racy, we attached two ultrafine poly-Si gates so as to
cover part of the island as shown in Fig. 8(b). The

capacitances of the two gates were almost equal due
to the symmetrical configuration. The drain current
oscillation characteristics as a function of one of the
gate voltages are shown in Fig. 9(a). Since both gates
have almost the same capacitance of 0.4 aF, the oscil-
lation phase shifts by about π in the negative voltage
direction when one of the gate voltages Vg2 is
changed from 0 V to 0.2 V. Figure 9(b) shows the
drain current switching measured at 40 K in response
to the switching of the two input-gate voltages (Vg1

and Vg2) between 0 and 0.2 V. Low current levels
were obtained only when the input voltages were
both high or both low. This represents an XOR-gate
operation, which can be implemented with just one
SET.  

This functionality of the multigate SET enables us
to make multibit adders with a small number of tran-
sistors without any wire crossing [18]. This is advan-
tageous not only for reducing device area but also for
achieving high-speed operation, despite the low dri-
vability of SETs. 

4.2   Multiple-valued operation
It is widely known that multiple-valued logic

allows us to reduce the number of transistors and the
amount of wiring in LSIs. This is another effective
way to reduce the power dissipation and chip size of
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Fig. 7.   Equivalent circuit of a multigate SET.
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Fig. 8.   SEM image of a dual gate SET before (a) and after
(b) the formation of two ultra-fine gate electrodes.
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LSIs. SETs, which have oscillatory conductance
characteristics, are highly suitable for multiple-val-
ued applications [19], [20], in which the number of
electrons in the island represents multiple values. To
achieve several stable points, we must attain multi-
peak negative differential resistance (NDR) charac-
teristics in which the current oscillates as a function
of drain voltage. As shown in Fig. 6, the SET current
oscillating as a function of input gate voltage cannot
be used for a multiple-valued operation, because the
SET cannot generate output voltages proportional to
the number of electrons in the SET island. The prob-
lem is that the Coulomb blockade is lifted when Vds is
higher than e/Ctotal, which limits the voltage Vds that
can be applied to the drain terminal.

To overcome this problem, we developed a SET-
MOSFET combined circuit. We can convert the hor-
izontal axis of current characteristics oscillating as a
function of gate voltage to ones oscillating as a func-
tion of drain voltage by connecting a small MOSFET
in series with the SET. One of the great advantages of
the PADOX method is that the basic fabrication
process is compatible with that for conventional
MOSLSIs, which enables us to easily combine SETs
and MOSFETs [19]. The equivalent circuit of the
device is shown in Fig. 10(a). The gate of a SET is
connected to the drain of a MOSFET. The MOSFET
connected in series keeps the Vds at nearly Vgg – Vth,
where Vth is the threshold voltage of the MOSFET. If
Vgg – Vth is set lower than e/Ctotal, clear current oscil-
lation can be retained even when a higher voltage V is
applied at the drain of the MOSFET. By connecting
the SET gate to the MOSFET drain, we obtain multi-
peak current oscillation as a function of V, resulting
in NDR characteristics such as those schematically
shown in Fig. 10(b).
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If a current source I0 is connected to the circuit,
many points (indicated by arrows in Fig. 10(b))
become stable. Each stability point corresponds to the
number of electrons in the island at a particular
applied voltage V. It is advantageous that just two
transistors can provide a multipeak NDR device in
which the number of the peaks is infinite in principle
within the breakdown voltages of the MOSFET drain
or the SET gate. These characteristics can also be
applied to multiple-valued memories [19], [21]. In
conventional multipeak NDR devices, such as reso-
nant tunneling diodes, the same number of devices as
peaks is required. 

The most important use of this NDR device with
multiple stability points is to build multiple-valued
logic circuits. One of the basic circuits of multiple-
valued logic is a quantizer that discriminates an ana-
log input signal into predefined voltage levels. By
using the circuit shown in Fig. 10(a), we have built a
quantizer [18]. Figure 11 shows measured wave-
forms for Vin, CLK, and Vout of the quantizer. Input
triangular wave Vin, transferred to the drain terminal
(V in Fig. 10(a)) according to short clock pulses
(CLK), settles down to the stability points, and output
voltage Vout is quantized to the levels 0–5, as shown
in the figure. This demonstrates the operation of a
quantizer with a six-valued output voltage. Although
the operating speed is rather slow, it is not limited by
the intrinsic performance of the device, but by the
large capacitance existing at the Vout terminal for the
measurement with an oscilloscope. Based on the cir-
cuit shown in Fig. 10(a), we have proposed a full
adder for redundant number representation with a
very small number of transistors, and a high-speed

analog-to-digital converter [21]. These are advanta-
geous not only for circuit size reduction but also for
low-power operation. 

5.   Conclusion

Single-electron transistors (SETs) have high poten-
tial for future large-scale integration because of their
low power consumption and small size. Although it is
not easy to fabricate them because of their small size,
we have developed a novel fabrication method for Si
SETs called pattern-dependent oxidation (PADOX),
which is simple and compatible with the convention-
al fabrication processes for CMOS LSIs. We have
demonstrated some logic-circuit applications of
devices fabricated by PADOX. In these applications,
we use the special functional features of the SET,
such as multiple-gate capability and multiple-peak
oscillatory characteristics. By exploiting these spe-
cial features, we can achieve complicated functions
with a small number of transistors, which will reduce
the size and power dissipation of circuits.
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