
Vol. 2  No. 6  June 2004 43

1.   Introduction

The past few years have seen the development of
several new file sharing applications and protocols
based on the pure peer-to-peer (P2P) model, which
does not have any servers to support clients. In this
model, every client acts as a server. These so-called
“servents” (servent = server + client) form a decen-
tralized and unstructured application-level overlay
network on the physical layer, by connecting to exist-
ing servents.

Several pure P2P applications pass messages (pack-
ets) that implement file sharing among servents on
the overlay network. For example, query packets for
target files are broadcast on the overlay network. This
flooding-based query-packet-forwarding algorithm
(flooding-based query algorithm) is clearly not scal-
able because it will obviously lead to an overhead,
such as an overwhelming amount of query traffic and
a high CPU load, as more servents join the overlay
network. Against this background, the possibility of

multiple random walks (k-random walks) on a pure
P2P network to find target files has been discussed
[1]. In the k-random walks, a requesting node sends k
query packets, and each query packet takes its own
random walk on the network. Although another
search algorithm has been studied [2], it needs an
additional function to cache query results that cannot
be obtained by the usual pure P2P protocols.

This paper first provides a unified framework that
can describe a wide variety of query algorithms.
Based on this framework, we then propose a new
query algorithm that can reduce the overhead without
decreasing the success rate of retrieval regardless of
the density of the target files in the network. Our
framework includes the flooding-based query algo-
rithm, which can determine the number of destina-
tions for query packets based on the hop value
recorded in received query packets. Note that the hop
value is information that the query packet usually has.
We evaluated three query algorithms within the
framework (flooding, k-random walk, proposed) by
simulation, where the algorithms ran on a model
drawn from actual topology data accessible to the
public [3].

Masato Uchida† and Shinya Nogami
Abstract

In pure peer-to-peer (P2P) file sharing applications and protocols using a flooding-based query algo-
rithm, a large number of control packets (query packets) are transmitted on the network to search for tar-
get files. This flooding-based query-packet-forwarding algorithm is clearly not scalable because it will
lead to an overhead, such as an overwhelming amount of query traffic and a high CPU load, as more ser-
vents (servent = server + client) join the overlay network. To solve such problems, this paper proposes a
new query algorithm based on a unified framework that describes a wide variety of query algorithms for
pure P2P. This framework determines the number of destinations for query packets based on the hop
value recorded in received query packets. Simulation results revealed that the proposed query algorithm
can reduce the overhead in the flooding-based query algorithm without decreasing the success rate of
retrieval regardless of the density of target files in the network.

Unified Framework and an Algorithm for Searching in
Pure P2P—Hop-value-based Query-packet Forwarding

† NTT Service Integration Laboratories
Musashino-shi, 180-8585 Japan
E-mail: uchida.masato@lab.ntt.co.jp

Regular Papers



44 NTT Technical Review

2.   Flooding-based query algorithm

Several pure P2P applications, such as Gnutella and
its clones, pass query packets that implement file
sharing between servents on the overlay network.
Specifically, each servent forwards the received
query packets to all of its neighbors. Each packet’s
header contains a time-to-live (TTL) field. TTL is
used in the same fashion as in the IP protocol: at each
hop its value is decremented until it reaches zero, at
which point the packet is discarded. That is, TTL
shows how many times the packet will be forwarded
by servents before it is removed from the network.
Each packet’s header also contains a hop field. The
hop value is incremented at each hop. That is, the hop
value is the number of times the packet has been for-
warded.

3.   Unified framework for query algorithms

This section first provides a unified framework that
allows us to describe a wide variety of query algo-
rithms. Then, we give examples of how algorithms
are set up within the framework.

The key idea of the proposed framework is to utilize
the hop value h recorded in the received query pack-
ets when they are forwarded (Figs. 1 and 2). That is,
a servent forwards the received query packet to some
of its neighbors according to h, while a servent that
uses the flooding-based query algorithm forwards the
received query packet to all of its neighbors regard-
less of h.

The proposed framework is outlined in Figs. 1 and
2, where the crossed circle is connected with the cir-

cled circle, closed circles, and open circles. When the
crossed circle receives a query packet (squared
square) whose TTL is t and hop value is h from the
circled circle, it performs the following procedure.
Step 1: If t = 0, the crossed circle drops the query

packet; otherwise, it determines the number
of destinations N(h).

Step 2: If N(h) ≤ n, the crossed circle selects N(h) 
servents (closed circles) randomly from n ser-
vents without multiplicity (Fig. 1); otherwise,
it selects N(h) servents (closed circles) ran-
domly from the n servents with multiplicity
(Fig. 2), excluding the servent that transmit-
ted the incoming query packet (circled circle).

Step 3: The crossed circle decrements t and incre-
ments h of the received query packet. Then, it
forwards the query packets (crossed squares)
to the selected servents.

We can construct various query algorithms based
on the above by setting N(h) appropriately. For exam-
ple, the definition enables us to describe both the
flooding-based query algorithm and k-random walks
within the framework by setting N(h) as follows.

Obviously, N1(h) is equivalent to the flooding-based
query algorithm, and N2(h) is equivalent to the k-ran-
dom walks when d2 = 0. This means that the proposed

N h
n h d

h d
d

N h
k h d

h d
d k

1
1

1
1

2
2

2
2

0

1

( ) , ,( : )

( ) , ( , : ).

=
≤
>





=
≤
>





for

for

for

for

constant

constant

Regular Papers

TTL t
hop h

TTL t–1
hop h+1

Fig. 1.   Query packet forwarding algorithm for N(h) ≤ n.
Circle and square objects indicate servents and
query packets, respectively.

TTL t
hop h

TTL t–1
hop h+1

Fig. 2.   Query packet forwarding algorithm for N(h) > n.
Circle and square objects indicate servents and
query packets, respectively.



Regular Papers

Vol. 2  No. 6  June 2004 45

framework is a natural extension of the notion of
query algorithms.

Next, we propose a new query algorithm based on
the above framework. It is defined as follows.

In N3(h), the number of destinations for query pack-
ets that will be forwarded decreases as the hop value
grows depending on the nodal degree. There are
numerous similar examples to N3(h). For example,

However, we found heuristically that N3(h) gives bet-
ter performance than the examples we tried in simu-
lations. Finding the best form of N(h) theoretically is
still an open problem.

4.   Simulation

In this section, we consider the appropriate forms of
N(h) that can reduce the number of query packets
without decreasing the success rate of retrieval. To
achieve this, we compared the performance of N1(h),
N2(h), and N3(h) through simulation. Though N(h)
can take other values, we can obtain a rough approx-
imation by evaluating these forwarding algorithms.
We also used real topology data accessible to the pub-
lic [3]. Statistics about these data are listed in Table
1, where the edge is a link between two nodes and the
degree of a node is the number of edges that the node
has.

4.1   Preparation
We performed the simulation on the proposed

framework as follows.
Step 1: Select topology t from crawl1, . . . , crawl6,

where the set of servents forming a network is
described by Ct.

Step 2: For each topology, place a target file, which
will be searched for, on all servents included
in Ct with probability (density) p, where the
number of placements is described by
NumPlace.

Step 3: For each placement, randomly select a ser-
vent, which will search for the target file,
from Ct, where the number of selections is
NumQuery.

Step 4: Transmit the query packets generated by each
selected servent, based on the proposed
framework in Section 3.

Note that, for each set of topology t and probability
p, statistics can be collected NumPlace × NumQuery
times through the above simulation. In this paper, we
collected the following statistics concerning both
success rate of retrieval and overhead of query algo-
rithm, where i = 1, . . . , NumPlace × NumQuery.

st,p(i): A value describing whether or not target
files will be found before the search termi-
nates (i.e., the value is 1 when the target
files are found at least once and 0 other-
wise).

gt,p(i): Number of (all) generated query packets
that each node in the network must process
before the search terminates (i.e., the aver-
age number of (all) existing query packets
in the network before the search termi-
nates).

vt,p(i): Number of visited nodes before the search
terminates.

dt,p(i): Number of duplicated query packets that
each node in the network must process
before the search terminates, where the
number of duplicated query packets is
defined as gt,p(i) – vt,p(i).

′ =
≤ ′
> ′

′




′′ =
≤ ′′

− − ′′ > ′′
′′





N h
n h d

h d
d

N h
n h d

n h d h d
d

( ) , ( : ),

( )
( )

, ( : ).

for

for
constant

for

for
constant

1

N h

n h d

n h d
d

h d
3

3

1
1 3

3
3

( ) , ( : ).=
≤

>+ −

for

for
constant

Data name crawl1.log crawl2.log crawl3.log crawl4.log crawl5.log crawl6.log

Number of nodes 737 1568 653 435 2282 1406

Number of edges 803 1906 738 459 2765 1583

Average degree 2.1791 2.43112 2.26034 2.11034 2.42331 2.25178

Variance of degree 4.02762 31.1113 49.3197 26.5579 17.2467 8.59948

Maximum degree 18 186 143 64 108 61

Table 1.   Topology data statistics.



Regular Papers

46 NTT Technical Review

Using these statistics, we can define the following
criteria, where |Ct| is the number of elements includ-
ed in the set Ct. We evaluated the simulation results
for each set of topology t and probability p using
these criteria.

St,p: Probability of finding the target object before
the search terminates.

Gt,p: Overhead of an algorithm measured by the
average number of generated query packets
that each node in the network must process.

Dt,p: Overhead of an algorithm measured by the
average number of duplicated query packets
that each node in the network must process.

4.2   Results and discussion
The simulation results are shown in Figs. 3–6,

where the parameter values used for these simula-
tions are listed in Table 2. The results are summa-

rized in Table 3. Although these figures are for
crawl5, the results were almost the same even when
other topology data was used.

We measured the overheads of algorithms by Gt,p

and Dt,p. Note that the average number of generated
query packets per node (Gt,p) and the average number
of duplicated query packets per node (Dt,p) increased
as the values of d1, k, and d3 rose.

As we can see from Fig. 3, which is for p = 0.05,
N2(h) and N3(h) found target files with higher proba-
bility than N1(h), when N1(h), N2(h), and N3(h) used
the same number of generated query packets. Addi-
tionally, we can see from Fig. 4, which is for p = 0.01,
that N1(h) and N3(h) found the target files with high-
er probability than N2(h), when N1(h), N2(h), and
N3(h) used the same number of generated query pack-
ets. This means that N3(h) found the target files with
a smaller number of generated query packets regard-
less of the value of p, although N1(h) found target files
with a smaller number of generated query packets
only when p was low, and N2(h) found target files
with a smaller number of generated query packets
only when p was high.

Moreover, as we can see from Fig. 5, which is for p
= 0.05, N3(h) found target files with higher probabil-
ity than N1(h) and N2(h), when N1(h), N2(h), and
N3(h) used the same number of duplicated query
packets. Additionally, as we can see from Fig. 6,
which is for p = 0.01, N1(h) and N3(h) found the tar-
get files with higher probability than N2(h), when
N1(h), N2(h), and N3(h) used the same number of
duplicated query packets. This means that N3(h)

D
C

d
t p

t

t p i
,

( )=
∗

∗∑1 ,i=1

NumPlace NumQuery

NumPlace NumQuery

G
C

g
t p

t

t p i
,

( )=
∗

∗∑1 ,i=1

NumPlace NumQuery

NumPlace NumQuery

S
s

t p
t p i

,
( )=

∗

∗∑ ,i=1

NumPlace NumQuery

NumPlace NumQuery

0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

Gcrawl5,0.05

S
cr

aw
l5

,0
.0

5

1 10

N1

N2

N3

Fig. 3.   Success rate of retrieval (Scrawl5,0.05) versus the
average number of generated query packets per
node (Gcrawl5,0.05). The horizontal axis is a log scale.

0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

Gcrawl5,0.01

S
cr

aw
l5

,0
.0

1

1 10

N1

N2

N3

Fig. 4.   Success rate of retrieval (Scrawl5,0.01) versus the
average number of generated query packets per
node (Gcrawl5,0.01). The horizontal axis is a log scale.



Regular Papers

Vol. 2  No. 6  June 2004 47

found target files with a smaller number of duplicat-
ed query packets regardless of the value of p,
although N1(h) found the target files with a smaller
number of generated query packets only when p was
low, and N2(h) found target files with a larger number
of duplicated query packets regardless of the value of
p. This is because if the query algorithm based on
N2(h) is used, the requesting servent’s neighbors must
transmit numerous redundant query packets when k is
high. We therefore conclude that N3(h) can find target
files with fewer query packets without duplication,
regardless of the value of p, if the values of the para-
meters listed in Table 2 are appropriately adjusted,
although N1(h) can find target files with fewer query
packets without duplication only when p is low, and
N2(h) can find target files with fewer query packets by
duplication only when p is high.

5.   Conclusion and further study

This paper proposed a new query algorithm based
on a unified framework which describes a wide vari-
ety of query algorithms for pure P2P such as the
flooding-based query algorithm and the k-random
walks. The proposed query algorithm can reduce the
overhead without decreasing the success rate of
retrieval regardless of the density of the target files in
the network, where our framework can determine the
number of destinations for query packets based on the
hop value recorded in received query packets. More
specifically, simulation study found that the new
query algorithm is a better query algorithm than the
flooding-based query algorithm and the k-random
walks. Based on the above, we can conclude that the
number of servents to which the query packet will be
forwarded should be small as the hop value increases
like N3(h). The results in this paper are useful for
designing a scalable query algorithm for pure P2P.

0.0001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01

Dcrawl5,0.05

S
cr

aw
l5

,0
.0

5

0.1 1

N1

N2

N3

Fig. 5.   Success rate of retrieval (Scrawl5,0.05) versus the
average number of duplicated query packets per
node (Dcrawl5,0.05). The horizontal axis is a log scale.

0.0001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01

Dcrawl5,0.01

S
cr

aw
l5

,0
.0

1

0.1 1

N1

N2

N3

Fig. 6.   Success rate of retrieval (Scrawl5,0.01) versus the
average number of duplicated query packets per
node (Dcrawl5,0.01). The horizontal axis is a log scale.

NumPlace 20

NumQuery 200

TTL (0)* 7

p 0.01, 0.05

d1 0, 1, 2, 3, 4, 5, 6

d2 0

d3 0, 1, 2, 3, 4, 5, 6, 7

k 10, 20, 40, 80, 160, 320, 640

* The initial value of TTL defined by requesting servent

Table 2.   Parameter values.

N1

Gt, p

good

bad

Dt, p

good

p = 0.01

p = 0.05

p = 0.01

p = 0.05 bad

N2

bad

good

bad

bad

N3

good

good

good

good

Table 3.   Results of simulations.



References

[1] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replica-
tion in Unstructured Peer-to-Peer Networks,” Proceedings of the 16th
Annual ACM International Conference on Supercomputing, New
York City, U.S.A., June 2002.

[2] K. Sripanidkulchai, “The Popularity of Gnutella Queries and Its
Implications on Scalability,” http://www-2.cs.cmu.edu/kunwadee/
research/p2p/gnutella.html.

[3] http://crawler.limewire.org/data.html

Regular Papers

48 NTT Technical Review

Shinya Nogami
Senior Research Engineer, Communication

Traffic & Service Quality Project, NTT Service
Integration Laboratories.

He received the B.E., M.E., and D.Eng.
degrees in electrical and communications engi-
neering from Tohoku University, Sendai in 1979,
1981, and 1984, respectively. In 1984, he joined
Nippon Telegraph and Telephone Public Corpo-
ration (now NTT) where he has been researching
traffic design and the performance evaluation of
information communications and switching sys-
tems. He is a member of the Communications
Society of the IEEE and the Information Pro-
cessing Society of Japan, and he has been an
associate editor of IEICE Trans. on Communica-
tions since 2003.

Masato Uchida
Communication Traffic & Service Quality

Project, NTT Service Integration Laboratories.
He received the B.E. and M.E. degrees in infor-

mation engineering from Hokkaido University,
Sapporo, Hokkaido in 1999 and 2001, respec-
tively. In 2001, he joined NTT Service Integra-
tion Laboratories, Tokyo, Japan. He is a member
of the Institute of Electronics, Information and
Communication Engineers of Japan (IEICE). He
received the research award (IEICE Communica-
tion Quality Technical Group) in 2003 and the
young investigators’ award (IEICE) in 2004.


