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1.   Introduction

Correlation is an essential ingredient of informa-
tion processing. Indeed, the very purpose of commu-
nication is to create a correlation between a sender
and a receiver so that they share the same information
after the transmission. Private cryptographic keys
shared between two parties are correlations that
enable secure communication. Also, computation is a
process that correlates input with output. All of these
are correlations of classical information, which is
operated according to classical physics.

Quantum theory, which describes the physics of the
microscopic world, offers yet another type of correla-
tion called entanglement. Entanglement is a weird
link between two (or more) quantum systems in that
it cannot be explained in a classical manner. Howev-
er, it is this weirdness that makes entanglement an
indispensable resource for quantum information pro-
cessing. In quantum teleportation [1], entanglement
acts as a sort of channel. In quantum cryptography
[2], it can change into cryptographic keys. It is also
believed to be the key to efficient quantum computa-
tion [3].

With the resource of entanglement, we have entered
a new era of information processing that is far more
powerful than anything conceived before. However,

we still have a long way to go before we grasp the
fundamental laws governing the behavior of entan-
glement. As with other physical resources like ener-
gy, quantification is the key to understanding the full
potential of entanglement. We need to establish a
measure to specify the amount of entanglement in
order to use it effectively and efficiently. In this paper,
we explore whether it is possible to define a measure
of entanglement uniquely.

For bipartite pure-state entanglement, a unique
measure has already been established, which is
known as the entropy of entanglement. Interestingly,
it turns out that thermodynamics and the theory of
bipartite pure-state entanglement share the same
mathematical structure. The proof of the uniqueness
of the entanglement measure is therefore essentially
the same as that of the uniqueness of entropy in quan-
tifying thermal equilibrium states [4]. However, for
mixed-state entanglement, several different measures
have been proposed; there is not a unique one because
different measures are needed for quantifying mixed-
state entanglement in different scenarios [5]. In this
paper, I show that the non-uniqueness of the entan-
glement measure originates in the structure of the
entire set of entangled states, which is classified
according to the operational notion of accessibility
between those states.

Entanglement is in principle a general notion
applicable to any quantum system. It can thus exist
between a pair of photons, a pair of atoms, and so on.
Therefore, the following argument holds in any rep-
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resentation of qubits (two-level quantum systems),
although its exposition might look rather abstract.
This is a very important feature of quantum informa-
tion theory in general, which “distills” only proper-
ties intrinsic to quantum theory itself and is indepen-
dent of specific systems. In other words, how well we
can manipulate information quantumly depends
heavily on how well we understand the structure of
Hilbert space operationally. (For an introduction to
quantum information theory, see Ref. [6].)

This paper is organized as follows. Section 2 intro-
duces the basic ideas of entanglement manipulation:
the definition of entanglement and the framework in
which we deal with it. Section 3 revisits, from a very
general point of view, the way we quantify a physical
quantity. The relationship between the accessibility
of physical states and their ordering is presented. Sec-
tion 4 reviews the unique measure for bipartite pure-
state entanglement. Section 5 discusses the main
result of this paper: the non-uniqueness of the entan-
glement measure and the accessibility between
entangled states. Finally, section 6 summarizes the
paper.

2.   Entanglement manipulation

This section defines entanglement and presents the
framework that we use for dealing with it, which is
the minimal prerequisite for understanding the rest of
the paper.

Suppose two parties, say Alice and Bob, are dis-
tantly located and share the following two-qubit
quantum state called a Bell pair, with each qubit
being possessed by one party:

(1)

We say a state is entangled when the state of the
entire system cannot be written as a tensor product of
the states of each part, like Eq. (1). Conversely, if a
state can be written in a product form like 0〉A⊗  0〉B,
then it is not entangled. Indeed, the above example of
a Bell pair cannot be factorized into a product form.

This is the definition of pure entangled states. The
entire state, the two-qubit state in the above example,
is a pure quantum state, for which one can have com-
plete knowledge about the identity of the state. How-
ever, there is another type of quantum states called
mixed states, for which all one can know is a statisti-
cal distribution over possible quantum states. For
example, suppose a quantum system is in a stateψ〉
with probability p and in a state φ〉 with probability 

1 – p. The state of the system is written as ρ =
pψ〉〈 ψ + (1 – p) φ〉〈 φ . This is an example of mixed
states, which are described by density matrices. In
other words, pure states are special cases where one
can know the identity of the state of the system with
probability 1.

The definition of entangled states can be extended
to mixed states as well. A composite quantum system
is called entangled when the state cannot be written as
a statistical mixture of product states

(2)

where {pi} is the probability distribution, and ρA
(i) and

ρB
(i) are local density matrices for Alice and Bob,

respectively. This is a natural generalization of the
definition of pure entangled states.

Note that it is crucial in the definition of entangled
states that one recognizes that the entire system is
composed of two (or more) parts so that one can
speak about the correlation between the parts. If the
entire system is considered to be one quantum system
located in one place (for example, the Bell state in Eq.
(1) can be viewed as one state of a four-level system),
then the notion of entanglement disappears. Entan-
glement relies on the tensor-product structure of
Hilbert space, which is expected to have a rich math-
ematical structure and deep implications for the
power of quantum information processing.

In order to fully appreciate the properties of entan-
glement and the tensor-product structure of Hilbert
space, we deal with it in a framework that is slightly
different from that used in traditional physics. As was
already pointed out, it is crucial that entangled sys-
tems are distributed at different places. We therefore
restrict ourselves to a scenario in which the two par-
ties are allowed to access only their own systems
locally and they can talk over a classical communica-
tion channel. In local operations, each party can
manipulate his/her own system at will by local uni-
tary time evolution and local quantum measurement
and can also add local ancillary quantum systems to
the original system, if necessary. A classical commu-
nication channel, say a traditional telephone line, is
necessary because distant parties might need to tell
each other their local measurement outcomes. This is
the framework of “local operations and classical
communication” (LOCC), on which our discussion
of the properties of entanglement is based.

In ordinary discussions of entanglement, we usual-
ly assume that entangled states are already shared
between distant parties somehow and see what will
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emerge under the LOCC framework. In other words,
the study of entanglement mainly focuses on investi-
gating the behavior of composite quantum systems
under LOCC. A simple example of LOCC protocols
is that of quantum teleportation [1]. Teleportation
allows two distant parties, Alice and Bob, to commu-
nicate a quantum state, without them actually sending
a quantum system itself, just by local quantum oper-
ations and classical communication, provided that
they shared a Bell pair in advance. In fact, they need
to send one qubit in the Bell state through a quantum
communication channel in advance. This means that
they do need a quantum channel in this sense. One
Bell pair is needed for transmission of one qubit
because the correlation in the Bell pair is broken and
thus consumed after teleportation. However, for any
input state, one type of entanglement, a Bell pair, is
enough to accomplish teleportation successfully, thus
Alice and Bob can prepare Bell pairs much earlier
than actual transmission of the input quantum state,
even before they have made up their mind to perform
the communication! This is the reason entangled
states work as quantum communication channels and
thereby serve as a resource for quantum information
processing.

Now that we have seen an aspect of entanglement
as a resource, a natural question arises: What if Alice
and Bob share different types of entangled states?
There are many different types of entangled states
besides Bell states. States can be partially entangled
in some situations, or might even be degraded into
some mixed entangled states during the initial trans-
mission of one half of a Bell pair, resulting in a less
entangled state. Therefore, to use the resource of
entanglement efficiently, we must develop a theory
for quantifying different types of entangled states,
hopefully in a unique way.

3.   Accessibility between physical states

In this section, before moving on to the question of
whether we can quantify entanglement uniquely, we

revisit from a general viewpoint the way in which
physical quantities are quantified. This approach to
quantification is based on the notion of accessibility,
which enables us to make the argument fully opera-
tional.

Accessibility between two physical states by some
physical operation is crucial in order to compare the
states quantitatively. When there exists an operation
that converts one state into the other, we say that the
latter is accessible from the former via the operational
process. Then, we can derive an ordering between the
two states from the accessibility based on the opera-
tion. This ordering between two states (together with
a few other natural assumptions) makes it possible to
define a quantity that compares them. The fact that
the ordering is naturally derived from some physical
time evolution (operation) means that the quantifica-
tion is not just artificial but physically reasonable.
However, if there is no operation that converts one
state into the other in either direction within a given
framework, it is impossible to conceive any coherent
way to compare them. One can allot any number to
the states to quantify them artificially, but such quan-
tification has no physical significance.

The uniqueness of a measure to quantify a certain
physical property relies heavily on the ordering prop-
erties of the entire state space. When all elements in a
given set of physical states can be completely
ordered, i.e., any two states are ordered, we say the
set is totally ordered (Fig. 1(a)). We can then make at
least one consistent measure that quantifies the states
in the set; one can align all the states based on the
accessibility and induce a measure according to the
alignment. Note that this property itself does not
guarantee the uniqueness of the measure. On the
other hand, if there is no ordering that works global-
ly in the set, i.e., a certain pair of states cannot be
ordered, we say that the set is partially ordered (Fig.
1(b)). We fail to find a consistent way to “align” all
the states, which implies that there is no unique mea-
sure. 

As seen in the above, total order itself is not a suffi-

Total order
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Partial order
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X
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Fig. 1.   (a) Total order: State X and state Y are accessible at least in one direction. 
(b) Partial order: State X and state Y are not accessible from each other in either direction. 
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cient condition for the uniqueness of a measure but a
necessary condition for it. Any set of physical states
that can be quantified uniquely must have a totally
ordered structure based on a relevant operation. The
contraposition of this statement means that if a state
space is partially ordered, then the set cannot be
quantified uniquely. This plays an important role in
the following argument for the non-uniqueness of the
entanglement measure.

Let us take a look at some familiar examples of total
and partial order to get a feeling for these abstract
definitions. These concepts occur in ordinary
physics, where they play fundamental roles, although
they might not always be recognized explicitly.

The most beautiful and successful application of
the theory of ordering physical states is in thermody-
namics, where totally ordered structure appears as a
basis of the uniqueness of entropy. Consider the set of
all thermal equilibrium states and the adiabatic oper-
ations between them. Here, by adiabatic processes we
mean processes in which thermodynamical systems,
say gas in a cylinder, are operated without exchang-
ing heat with the environment. We do not require that
the processes be quasi-static, i.e., infinitesimally
slow. States may change at any rate; for example, the
piston in the cylinder may move rapidly. It turns out
that the set of the equilibrium states is totally ordered
under adiabatic processes. From the totally ordered
structure (together with a few natural assumptions),
we can derive that entropy is the unique measure to
quantify the set of equilibrium states: Given two equi-
librium states, A and B, entropy S distinguishes
between possible and impossible directions of the
adiabatic processes between them. A can access B via
an adiabatic process if and only if S(A) ≤ S(B). If the
equality holds, B can also access A, so the process is
reversible. Quite interestingly, this property of ther-
modynamics parallels the theory of bipartite pure
entanglement, in which entropy is also the unique
measure of entanglement that distinguishes between
possible and impossible directions of entanglement
manipulation. We will briefly review this connection
in the next section. (For the operational approach to
thermodynamics mentioned here, see Ref. [4] and the
references contained therein.)

One of the most familiar examples in physics that
contains partial order is in the special theory of rela-
tivity. Consider a pair of events whose light cones
include each other, i.e., the interval between the two
events is time-like. Then, the events are accessible
because one can affect the other by sending a signal.
However, if one is outside the light cone of the other,

i.e., the interval between the two events is space-like,
then it is impossible to connect them by any physical
operation because nothing can travel faster than light.
Consequently, there is no unique way of ordering two
such events; different ordering is possible by choos-
ing different reference frames. Therefore, the set of
events in space time is a partially ordered one, which
leads to the well-known non-uniqueness of simul-
taneity that follows from the principles of special the-
ory of relativity. We will see a similar structure in
mixed entangled states below.

4.   Total order on bipartite pure entangled states

This section briefly reviews the well-established
theory of bipartite pure-state entanglement from the
viewpoint of ordering states. It will be seen that the
uniqueness of the entanglement measure for bipartite
pure states, the entropy of entanglement, can be
understood on the same basis as that of the opera-
tional approach to thermodynamics mentioned
above.

Suppose Alice and Bob share the following two-
qubit partially entangled states:

(3)

(Hereafter, we omit the symbol of the tensor product.)
Without loss of generality, we can focus on this form
of entangled states in which no “cross terms” like 01〉
or  10〉 appear due to Schmidt decomposition. For
simplicity, we discuss only two-qubit pure entangled
states here, but the following argument also holds in
general d-dimensional states as well, i.e., the situa-
tion in which Alice and Bob have d-level quantum
systems instead of qubits. Then, the unique measure
of bipartite entangled states is defined as follows [7]:

E(ψ) = –plog2p – (1 – p)log2(1 – p). (4)

This is von Neumann entropy of Alice’s (or Bob’s)
reduced density matrix and also the same quantity as
classical Shannon entropy. It is easily seen that it is
maximum when the entangled state is a maximally
entangled one, e.g., a Bell pair, in which the squared
amplitudes have equally weighted probability distri-
bution. Also, it takes the minimum value (zero) when
the state is either 00〉 or 11〉 , in accordance with our
intuition, which implies that the states contain no
entanglement. The amount of entanglement of par-
tially entangled states lies between zero and one in
the case of two-qubit states. Generally, d-level entan-
gled states are quantified by d-level Shannon entropy,
whose maximum is log2d.

ψ
AB AB ABp p p= + − ≤ ≤00 1 11 0 1( ).
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The measure has the following operational mean-
ing. When we say that an entangled state ψ 〉 has
entanglement E(ψ), this means the state is equivalent
to E(ψ) copies of Bell pairs. This interpretation is
based on two processes called entanglement distilla-
tion and entanglement dilution (or formation). Entan-
glement distillation enables us to extract maximally
entangled states (Bell pairs) from a given state by
only LOCC. In particular, imagine a situation in
which Alice and Bob share n identical copies of a
given state ψ〉 , and they try to distill as many Bell
pairs as possible from them. They are allowed to
manipulate the entire state of n copies collectively.
Let m be the number of Bell pairs distilled and define

. This quantity is called distillable

entanglement and represents the maximum number
of Bell pairs that can be distilled per copy. Converse-
ly, we can imagine the opposite process, in which
Alice and Bob try to form a given state from a supply
of a large number of Bell pairs by only LOCC, which
is entanglement dilution. Here again, suppose they
share k copies of Bell pairs in advance and try to
invest as few Bell pairs as possible to form a pretty
good approximation to n copies ofψ〉 by collective

operations. Then, the quantity is

called the entanglement cost, which represents the
minimum number of Bell pairs necessary to form the
state per copy. 

Quite surprisingly, in the case of pure states, these
two quantities coincide. That is, we can distill as
many Bell pairs as we invested in the formation per
copy, and vice versa. Furthermore, it turns out that
ED(ψ) = EC(ψ) = E(ψ). This property is far from obvi-
ous because protocols under LOCC are highly non-
trivial in general and not yet fully understood. These
are among the very few examples of LOCC protocols
that have been successfully established. 

According to the above interpretation, we can
always convert any bipartite pure state ψ〉 into the
other state φ〉 if and only if E(ψ) ≥ E(φ) by the fol-
lowing procedure: First, Alice and Bob distill E(ψ)
copies of Bell pairs from ψ〉 per copy, from which
they construct φ〉 by LOCC. This is always possible
because the number of Bell pairs necessary to con-
struct φ〉 is smaller than the number that can be dis-
tilled fromψ〉 . Note that these operations should be
performed asymptotically. Therefore, for any pair of
bipartite pure states, one state can access the other, at
least in one direction. This implies that the set of
bipartite pure states is totally ordered. 

This structure is exactly the same as that in thermo-
dynamics mentioned in the previous section. Thermal
equilibrium states and adiabatic processes in thermo-
dynamics correspond to bipartite pure states and
LOCC processes, respectively. In fact, with this anal-
ogy and a few other natural assumptions, we can
derive the uniqueness of entropy of entanglement as
an entanglement measure in a manner parallel to ther-
modynamics. This can be done by Giles’s axiomatic
approach to thermodynamics [4]. In summary, the
totally ordered structure of bipartite pure states is
essential for defining the unique measure, while we
will see in the next section that partial order appears
in mixed states.

5.   Partial order on mixed entangled states

Contrary to our success in defining the unique mea-
sure of entanglement in bipartite pure states, it turns
out that in this section we fail in our attempt to find a
unique measure for mixed-state entanglement as long
as we stick to the LOCC framework. That is, in the
most general class of entangled states, accessibility
between two arbitrary states does not hold any longer,
which implies that it is impossible to establish a phys-
ically reasonable unique measure of entanglement, at
least under LOCC.

In the following, it is shown that there exist two
mixed entangled states, ρAB and σAB, that are not
accessible in either direction, i.e., ρAB /→ σAB and 
σAB /→ ρAB. This is done by employing a very peculiar
entangled state called a bound entangled state [8].
Bound entangled states are intrinsic to the mixed-
state regime and do not appear in pure entangled
states. They are peculiar in that one cannot distill any
pure-state entanglement from them, while one must
invest some amount of entanglement to construct
them by LOCC. Thus, they have a sort of irre-
versibility in terms of the entanglement they consume
and produce.

The definitions of distillable entanglement and
entanglement cost given in the previous section are
naturally applicable to mixed states as well. Distill-
able entanglement represents the number of Bell
pairs that can be extracted from a given mixed entan-
gled state ρAB per copy. This includes more practical
meaning than pure-state cases because mixed entan-
gled states could appear due to decoherence process-
es during the transmission of half a pure entangled
pair from Alice to Bob to establish quantum correla-
tion between them prior to teleportation. Thus, distil-
lable entanglement quantifies the amount of entan-

E
k

nC n
( ) lim minψ ≡

→∞

E
m

nD n
( ) lim maxψ ≡
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glement one can recover from unwanted decoherence
processes, although we will not go into details of
entanglement distillation protocols here. According
to the definition of entanglement cost for pure states,
it represents the number of Bell pairs one needs to
invest to form a given mixed entangled state. Howev-
er, a big difference from pure-state cases is that here
Alice and Bob need to discard some information they
used in the formation process into the environment in
order to induce mixed states. Due to this process of
information loss, a sort of irreversibility enters into
mixed entangled states, and one cannot recover all the
entanglement invested in the formation phase. This
greatly contrasts with the case of pure states where
distillable entanglement and entanglement cost coin-
cide.

In terms of these quantities, a bound entangled state
ρAB is a state for which ED(ρAB) = 0. However, it is
natural to expect that even if ρAB is undistillable, it
should need some amount of entanglement when it is
created by LOCC, i.e., EC(ρAB) > 0. In fact, it has
been found that such bound entangled states exist [9],
i.e., ED(ρAB) = 0 but EC(ρAB) > 0, based on which we
will next construct an example of a pair of states that
are not accessible from each other.

Before moving on to the partial order argument, let
us define the notion of accessibility in our context.
We say a state φ is accessible from a state ψ when
there exists an asymptotic LOCC protocol such that n
copies of ψ can be converted into an arbitrarily good
approximation of n copies of φ. Note that we require
the accessibility between the same number of copies
here. For the detailed description of this definition
and the following argument, see Ref. [10].

Suppose we take a pure entangled state φ〉AB such
that 

0 < EC(φ) < EC(ρ). (5)

Then, by definition, the bound entangled states ρAB

cannot be converted into the pure state  φ〉AB. Thus,
 φ〉AB is not accessible from ρAB under LOCC, i.e., 
ρAB /→ φ〉AB〈φ . On the other hand, by using the prop-
erty of entanglement cost EC that it cannot be
increased by LOCC, it is shown that ρAB is also not
accessible from φ〉AB. Roughly speaking, this can be
understood as follows: entanglement cost represents
the minimum number of Bell pairs necessary to form
a given entangled state by LOCC. Thus, if it were
possible to convert an entangled state with a lower
entanglement cost into another state with a higher
entanglement cost by LOCC, there would be a con-
tradiction because the latter state would have to be

constructed from a smaller number of Bell pairs than
its entanglement cost, which is an apparent contra-
diction of the definition of entanglement cost. There-
fore, we have just shown that ρAB and  φ〉AB are not
accessible in either direction under LOCC. This
implies that the set of mixed entangled states is par-
tially ordered (Fig. 2). As we saw in Sec. 3, partial
order is the sufficient condition for the non-unique-
ness of a measure. Therefore, we cannot expect a
unique measure of entanglement for mixed states
under LOCC.

What we have shown reveals that the non-unique-
ness of entanglement measure originates in the partial
order structure of the set of mixed entangled states.
This clearly contrasts mixed-state entanglement with
pure-state entanglement, where we can draw a very
beautiful analogy with classical thermodynamics.
The fact that we need to choose different measures
for mixed-state entanglement in different scenarios
reflects that the set of mixed entangled states changes
its appearance when viewed from different “angles”
due to the partial order.

6.   Summary

In this paper, I reviewed the quantification of entan-
glement from an operational point of view based on a
very general notion of accessibility between physical
states. To be quantified uniquely under LOCC, the set
of entangled states should be totally ordered under
LOCC. When we restrict ourselves to bipartite pure
states, this certainly holds and a unique measure, the
entropy of entanglement, can be defined. However,
the set of mixed entangled states has a partially
ordered structure, so it is impossible to find a unique
measure under LOCC. This suggests that, unlike
other simple resources in physics, quantum entangle-
ment is a highly complicated physical resource,
which implies that it might be potentially far more
powerful and have a richer underlying structure than
presently expected. The theory of entanglement is

ρ  〉φ

Fig. 2.   Partial order on mixed entangled states. A bound
entangled state ρAB and a bipartite pure state
 φ〉AB are chosen such that 0 < EC(φ) < EC(ρ).
They are not accessible from each other in either
direction.
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still in its infancy and we have just started to recog-
nize its potential as a new type of physical resource.
A deeper understanding of the nature of entangle-
ment will shed some light on the power of quantum
information processing.
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