
38 NTT Technical Review

1.   Introduction

The cost of Japan’s national healthcare exceeded
thirty trillion yen in 2004 and is taking an ever bigger
share of the national budget. Other statistics show
that the second and third leading causes of death are
heart and cerebrovascular diseases*1, respectively,
which are both related to the circulatory system, and
that the combined number of victims of these dis-
eases equals the number of victims of cancer, the pri-
mary cause of death. Therefore, taking the action
against these circulatory diseases is very important.
More and more doctors are advocating preventive
medicine, which aims to prevent lifestyle diseases
and maintain health. For preventive medical care,
wearable medical sensors that can monitor physical
condition regardless of time and place would be very
useful. Moreover, being able to use such sensors in
combination with telecommunications systems
would be very effective for remote health manage-
ment.

To prevent circulatory diseases, many doctors
advise that we monitor our blood pressure at home.
For this purpose, various portable blood pressure
monitors are commercially available. However, blood
pressure data provides neither information about the
peripheral vascular resistance related to circulatory
diseases nor information about the real bloodflow in

tissues. To obtain such information, you need a blood
flowmeter. However, conventional ones are desktop-
sized pieces of equipment and weigh several kilo-
grams, so they are not really portable and cannot be
used for preventive medical care for daily monitoring
of the circulatory system. Recently, NTT has invent-
ed a portable micro laser blood flowmeter [1], [2], [3]
capable of wireless communication as a medical
application of photonics device technology original-
ly developed for optical telecommunications. This
paper describes this device and presents some exper-
imental data.

2.   Laser blood flowmeter

The bloodflow in living tissues was measured using
a laser for the first time in 1975 by Michael Stern. He
detected and analyzed scattered laser light signals
from biological tissue [4]. Nowadays, laser blood
flowmeters are manufactured in Sweden [5], the USA
[6], the UK [7], and Japan [8] and are widely used in
medicine and in other fields [9], [10]. In internal med-
icine, they are used in the diagnosis of peripheral cir-
culatory disturbances in diabetics. Otorhinolaryngol-
ogists*2 depend on them in measuring bloodflow in
nasal mucosa, and vascular surgeons depend on them
in diagnosing occlusive arterial disease. They are also

Selected Papers

Takanori Kiyokura†, Shinji Mino, and Junichi Shimada
Abstract

This paper describes a wearable laser blood flowmeter that is a fully functional miniaturized version
of a conventional desktop laser blood flowmeter. This innovation was achieved by applying optical
telecommunications device technology. Our micro laser blood flowmeter can monitor circadian changes
in bloodflow regardless of the time and place, so it will be useful in preventive medical care and in sports
medicine.

Wearable Laser Blood Flowmeter

† NTT Microsystem Integration Laboratories
Atsugi-shi, 243-0198 Japan
E-mail: kiyokura@aecl.ntt.co.jp

*1 Cerebrovascular diseases: diseases of the blood vessels of the
brain.

*2 Otorhinolaryngologist: medical specialist who studies diseases of
the ear, nose, and throat.



Vol. 4  No. 1  Jan. 2006 39

used in plastic surgery during skin transplants. More-
over, they can monitor relaxation, which is detected
by an increase in blood flow, and this has been used
in research in the automotive, apparel, cosmetics, and
construction industries to determine the level of user
comfort [9].

The principle of laser bloodflow measurement is
shown in Fig. 1 [11]. Light from a laser diode passes
through an optical fiber and irradiates tissue. The
laser light is scattered and reflected by the tissue and
by the blood cells in the capillaries. The velocity of
the bloodflow, which runs in all directions in the cap-
illary network, has a velocity distribution of 1 mm/s
or less. The scattered light from the tissue is conveyed
by another optical fiber to a photodiode and convert-
ed into an electrical signal. The Doppler effect caus-
es a frequency change in the received scattered light,
which is proportional to the velocity of the blood
cells. The principle of the bloodflow calculation

based on the detected signal is shown in Fig. 2.
Although the frequency of the laser light itself is too
high to be detected (hundreds of terahertz), the fre-
quency difference between the reflected light from
moving blood cells (frequency with Doppler shift)
and the reflected light from the tissue at rest (fre-
quency without Doppler shift) ranges from a few
hundred hertz to several tens of kilohertz. Therefore,
when the two lights interfere with each other, a
detectable beat signal [I(t)] is produced. In the power
spectrum graph of the beat signals [P(ω)], the fre-
quency axis corresponds to blood cell velocity and
the power axis to the number of blood cells. Roughly
speaking, the bloodflow can be expressed as the total
of the products of the number of blood cells traveling
at each particular velocity multiplied by that velocity.
Therefore, we can calculate the bloodflow by inte-
grating the products of the beat signal power spec-
trum and frequency.
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The structure of a conventional optical fiber laser
blood flowmeter is schematically shown in Fig. 3.
The equipment weighs several kilograms and is sev-
eral tens of centimeters wide and long. Although the
probe itself is very small, vibration of the optical fiber
influences the measured data. Moreover, the laser
diode and photodiode are each sealed inside a bulky
housing with a heat sink. Besides the laser diode and
photodiode, the optical system requires lenses and
fibers, and each optical axis of each optical compo-
nent must be aligned. The assembly process is time-
consuming, which has made it difficult to reduce the
cost. The other parts—the amplifier, analog-to-digital
(A/D) converter, digital signal processor (DSP), and
laser drive circuit—are electronic parts. Although it
is technically possible to reduce the size of the elec-
tronic parts by constructing them as an integrated cir-
cuit, the difficulty of miniaturizing the optical parts

has been an obstacle to reducing the total device size.
Thus, the conventional blood flowmeters used in
clinics and hospitals are desktop equipment that can-
not be freely moved.

3.   Technology for miniaturization

To solve these problems we eliminated the optical
fibers, decreased the number of parts, and simplified
the module assembly process. The sensor chip is
shown in detail in Fig. 4. It is fabricated as follows.
First, electrodes, solder film, and an optical wave-
guide are patterned onto a silicon substrate chip (2
mm × 3 mm) by photolithography. Then, the laser
diode and photodiode chips are integrated onto the
chip surface with high precision (±1 µm) [12]. Then,
a light-shading silicon cap is bonded to the chip. The
laser diode chip is a single-mode InGaAsP/InP dis-
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Fig. 3.   Structure of a conventional laser blood flowmeter.
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tributed feedback semiconductor laser diode with a
lifetime of 100,000 hours or more. The optical wave-
guide is made of fluorinated polyimide [13] which is
inexpensive and easy to fabricate. The photodiode is
an edge-illuminated refracting-facet photodiode [14].
Whereas the wavelength used by the conventional
laser blood flowmeter is 0.6–0.8 µm, these optical
devices operate at 1.3 µm, which enables better trans-
mittance through skin because very little of the light
is absorbed by melanin and hemoglobin [15]. In addi-
tion, the distributed feedback semiconductor laser
diode is very suitable for optical measurement
because it emits laser light of a single mode and the
frequency is very stable. To obtain a higher signal-to-
noise ratio, a conventional blood flowmeter uses an
optical fiber as a spatial filter for incoming light. We
were able to eliminate this optical fiber in our micro
blood flowmeter because the small light receiving
area of the edge-illuminated refracting-facet photodi-
ode works as a spatial filter. The light-shading silicon
cap prevents stray light from the laser diode reaching
the photodiode, which decreases the background
noise. 

For the micro laser blood flowmeter, we built a sur-

face integrated sensor chip that contains no discrete
components and no optical fibers. We achieved this
by using optical semiconductor devices and integra-
tion technology originally developed for optical
telecommunications. The sensor chip was mounted
on a circuit board with a preamplifier to amplify the
light signal received from the photodiode. Then, the
sensor chip was packaged and fitted with a sensor
head, which makes contact with the skin. The pack-
aged chip is shown in Fig. 5. The sensor head is 17 ×
12 × 6 mm3. It weighs 9.6 grams.

4.   Micro laser blood flowmeter

A photograph of the blood flowmeter being worn
on the wrist is shown in Fig. 6. The main unit on the
arm is 63 × 45 × 20 mm3. It weighs 55.8 grams. A liq-
uid crystal display on the main unit’s case indicates
the bloodflow. The main unit contains the electronic
parts: the amplifier, A/D converter, DSP, laser driving
circuit, display panel controller circuit, secondary cell,
and Bluetooth radio communication circuit. To make
maximum use of its portability, we added a radio com-
munication function for remote measurement.

5.   Bloodflow measurement

We performed some measurements of blood perfu-
sion from the fingertip. Figure 7 shows an example of
bloodflow data obtained simultaneously with the
wearable blood flowmeter (upper curve) and a con-
ventional one (lower curve). The sensor head was
attached directly to the fingertip using double-sided
tape to avoid external pressure. Data from the micro
laser blood flowmeter was sent wirelessly to a note-
book personal computer by using the Bluetooth trans-
mission protocol, and the graph was displayed on the
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Fig. 6.   Micro laser blood flowmeter.

Fig. 5.   Sensor head.



Selected Papers

42 NTT Technical Review

monitor in real time. To test the dynamic response of
microcirculation, the wrist was occluded with a pres-
surized cuff and the pressure released gradually. The
results clearly indicate that the bloodflow rapidly
decreased when the wrist was occluded and recov-
ered gradually as the pressure was released. The
bloodflow signal curves show small variations with
the heartbeat. The signal curve from the micro laser
blood flowmeter agrees well with the one from the
conventional laser blood flowmeter.

A correlation plot for the two flowmeters, shown in
Fig. 8, shows clear correlation. From the results of
Figs. 7 and 8, we conclude that the differences in indi-
cated values are small and the trend is similar. There-
fore, the micro blood flowmeter is by no means infe-
rior to the conventional one. 

6.   Conclusion

We have applied optical telecommunications

device technology to develop a wearable micro laser
blood flowmeter with wireless communication capa-
bility. This flowmeter will make it possible to moni-
tor changes in bloodflow regardless of time and
place. Bedside monitoring in hospitals and home
health monitoring of elderly people living alone with
this device will allow medical professionals to ascer-
tain physical conditions in real time and implement
necessary measures. Another use will be in the pre-
vention and management of lifestyle diseases at the
individual level through telemedicine and long-term
monitoring. Applications in sports medicine are also
expected because the device enables restraint-free
physiological data acquisition in training and compe-
tition. This device and others produced utilizing
telecommunications technology and ubiquitous net-
works should usher in a drastic change in medical ser-
vices from hospital-centric ones to home-centric ones
and shift the focus from treatment to prevention.
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