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1.   Introduction

Communication traffic, which includes both voice
and image data, is growing rapidly as Internet use
expands. To provide broadband communications, a
high-speed access network like fiber-to-the-home is
desired. A passive-optical-network (PON) optical-
subscriber system is inexpensive because it provides
point-to-multipoint communication and has big
advantages in both data transfer speed and cost [1],
[2]. The speed has been steadily increased as we have
progressed from the synchronous-transfer-mode
(STM) PON through the asynchronous-transfer-
mode (ATM) PON and broadband PON [3] to reach
the gigabit-class PON [4], [5].

A PON system and the burst-mode optical receiver
used in it are shown in Fig. 1. A passive optical cou-
pler allows several optical network units (ONUs) to
share an expensive optical line terminal (OLT), which
decreases the cost of the optical access system. On
the other hand, such a shared-access system has a
large path loss due to the large number of ONU

branches. Upstream and downstream data using the
optical wavelengths of 1.31 and 1.49 µm, respective-
ly, is multiplexed by a wavelength division multi-
plexer (WDM). In the downstream traffic, data pack-
ets are transmitted continuously with uniform ampli-
tude. In contrast, burst-data packets in the upstream
traffic are transmitted with very different power lev-
els because of the different transmission distances
between the ONUs and the OLT. The OLT must be
able to handle this irregular upstream data. Hence, the
optical receiver in the OLT is a key component of a
PON system.

The receiver in the OLT consists of a photodetector
(e.g., a photodiode (PD)) and an amplifier, as shown
in Fig. 1. The PD converts received optical signals to
electrical ones, and the amplifier amplifies the signals
to a sufficient amplitude for the signal-processing
large-scale integration (LSI) chip to handle. The per-
formance requirements for the optical receiver in a
gigabit-class PON system are shown in Fig. 2.
Because a passive optical coupler is used, the signals
are branched off and the shared-access loss is large.
To compensate for this shared loss, the receiver
should have a high sensitivity and a wide dynamic
range for the input signal power that can be accom-
modated. Moreover, in a PON system, each packet
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consists of a preamble, a header, and a payload, and
the receiver’s settling time must be less than the pre-
amble time. If we can shorten the response time, we
can reduce the preamble time and thereby improve
the efficiency of uplink-data transmission [6]. More-
over, for access networks, the cost of the receiver
must be low enough for subscriber use. However, the
OLT receivers in gigabit-class PONs generally use an
expensive avalanche photodiode (APD) as the pho-
todetector to obtain high sensitivity [7]. The prob-
lems with conventional receivers are summarized in
Table 1 along with our design targets.

To meet these requirements, we have devised cir-
cuit design techniques that enable both a quick
response and high sensitivity using an inexpensive
positive-intrinsic-negative photodiode (PIN-PD) [8],
[9].
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Fig. 1.   PON system and an optical receiver for an OLT.
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Table 1.   Properties of conventional receivers and our
targets.
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Fig. 2.   Performance requirements for the optical receiver.



Selected Papers

18 NTT Technical Review

2.   Circuit design techniques for a burst-mode
optical receiver

The developed burst-mode optical receiver consists
of a transimpedance amplifier (TIA) and a limiting
amplifier integrated circuit (IC), as shown in Fig. 3.

2.1   TIA circuit
For high sensitivity and a wide dynamic range, we

used a TIA with variable-transimpedance gain. A
detailed circuit block diagram of the new TIA is

shown in Fig. 4. The TIA consists of an amplifier
core with a variable-feedback resistor Rf controlled
by means of a quick level-detection circuit, a single-
to-balance converter, and an output buffer. The level-
detection circuit is configured using comparators
with hysteresis characteristics.

The operating principle of the gain-mode switching
is shown in Fig. 5. The TIA has three gain modes:
high, medium, and low. When the input signal is
small, a high feedback resistance value RH is selected
to decrease thermal noise and thereby obtain high
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Fig. 3.   Optical receiver circuit configuration.
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sensitivity. If the input signal current is large, the
value of the feedback resistor is reduced to RM or RL

to avoid waveform degradation. To change the gain
mode, when the amplitude of the output voltage of
the TIA reaches the threshold voltage (Vth), switch
SW1 turns on and initiates the first change from high
to medium. After SW1 turns on, SW2 becomes avail-
able through SW3, which is controlled by SW1. The
second gain mode change, from medium to low, is
performed by SW2. The detailed circuit of the feed-
back resistor Rf is shown in Fig. 5(b). The feedback
resistor Rf, which can take three values: RH, RM, and
RL, contains three separate resistors: a large one R1, a
medium one R2, and a small one R3. It is controlled by
the level-detection circuit. R2 and R3 are connected to
R1 in parallel using metal oxide semiconductor field
effect transistor (MOSFET) switches, which are con-
trolled to change the gain mode.

Fast response is also essential for burst-mode oper-
ation. The response speed of the level detection and
switching mainly determines the speed of the gain-
mode change. For high-speed detection, we use a
hysteresis comparator, which enables fast level detec-
tion and hold. Once the input signal exceeds the hys-
teresis voltage of the comparator Vth, the output is
quickly changed to on. And the level of the detected
signal is maintained due to the hysteresis transfer
characteristics. This means that the TIA can quickly
switch the gain without any external adjustments.

2.2   Limiting amplifier circuit
For burst-mode operation, the receiver should be

able to handle data packets with different amplitudes
corresponding to the various transmission distances.
To handle these data packets, the offset voltage in
each data packet should be eliminated to generate a
clear reshaping signal that can be received in the fol-
lowing digital circuits. The offset voltage gives rise to
duty cycle variation of the signal and degrades the
receiver performance. To remove the offset due to
packet data, we used a limiting amplifier with an
auto-offset compensation (AOC) circuit. 

A circuit block diagram of the limiting amplifier
and an outline of the AOC operation are shown in
Fig. 6. For accurate compensation, we used a two-
stage amplifier with a feed-forward AOC [9] config-
uration that performs coarse and fine offset compen-
sations. In a conventional limiting amplifier, AOC
uses a feedback loop configuration for stable opera-
tion. However, the feedback loop takes a long time to
respond to any change in offset conditions. On the
other hand, the feed-forward configuration provides a
quick response because there is no feedback loop.

In addition, to improve the accuracy and dynamic
range of the offset compensation, we used a two-
stage AOC configuration. When the input signal is
small, coarse AOC is performed in the first-stage
AOC circuit and fine AOC is performed in the second
stage. When the input signal is large, the offset volt-
age is effectively cancelled in the first-stage AOC cir-
cuit. In addition, this AOC circuit enables high sensi-
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tivity without any external adjustments because the
two-stage configuration mitigates the accuracy
requirement in the level-hold operation. In this cir-
cuit, a reset signal initializes the condition of offset
compensation for each packet. These circuit tech-
niques enable a quick response.

For stable operation at a data rate of 1.25 Gbit/s, a
differential interface with 50-Ω impedance matching
was used between the TIA and limiting amplifier cir-
cuits. The electrical output interface of the limiting
amplifier is differential low-voltage positive emitter-
coupled logic (LVPECL). Consequently, the circuit
techniques used in the TIA and limiting amplifier
enable the receiver’s settling time to be very short and
enable data to be output with a constant amplitude.

3.   Experimental results

3.1   IC fabrication
Using these circuit design techniques, we fabricat-

ed TIA and limiting amplifier ICs using silicon ger-
manium bipolar complementary metal oxide semi-
conductor (SiGe-BiCMOS) technology. Micropho-
tographs of the ICs are shown in Figs. 7(a) and (b),
respectively. The die sizes are 1.1 mm × 1.0 mm for
the TIA IC and 1.0 mm × 1.1 mm for the limiting

amplifier IC.
The TIA IC with a PIN-PD was packaged in a con-

ventional metal can, and the limiting amplifier IC was
molded in a low-cost plastic package. An optical
receiver was built using this optical module and the
packaged limiting amplifier IC. A photograph of the
evaluation board of the receiver is shown in Fig. 7(c).
The supply voltage of the optical receiver is +3.3 V
and the power dissipation of the ICs is about 300 mW,
excluding the output load current.

3.2   IC performance
The receiver was operated at 1.25 Gbit/s and the

performance was evaluated using burst-mode optical
data with a pseudo-random-bit sequence (PRBS).
Waveforms for high-, medium-, and low-gain modes
at optical input powers of –30, –24, and –10 dBm,
respectively, with an extinction ratio of 10 dB are
shown in Fig. 8(a). These results confirm that the
receiver could generate data with clear eye opening in
all gain modes. Even in the high gain mode, a clear
eye pattern was obtained for a small optical input sig-
nal of –30 dBm. Our circuit techniques make it pos-
sible to improve the sensitivity compared with con-
ventional ones [6], [10], [11]. The measurement
results reveal that the sensitivity of the developed
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Fig. 7.   Optical receiver ICs and the evaluation board.
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receiver with a PIN-PD is as high as that of one with
an APD for burst-mode use [7].

To demonstrate the response speed, we evaluated
the response waveform for burst data. An example of
the receiver output waveforms for packet data with
different amplitudes is shown in Fig. 8(b). The top
waveform is an optical input, and the bottom one is
the receiver output. The optical power of the first
packet was –6 dBm and that of the second one was
–30 dBm. The receiver generated a clear reshaped
signal with constant amplitude. The output waveform
also shows that the settling time for the second pack-
et was very short. These results show that the receiv-
er can respond quickly to burst data and generate a
constant output amplitude for extremely different
input optical powers. 

We also evaluated the response speed taking into
consideration gain-mode switching. The responses to
burst data in bit-error-rate measurements in the high-,
medium-, and low-gain modes are shown in Fig. 9. In
this figure, the horizontal axis is the starting bit of
error counts in packet data, or the settling time. The
receiver achieved a fast settling time of under 44 bits,
which satisfies the specifications for both GE-PON
(Gigabit Ethernet PON) [4] and G-PON (Gigabit
PON) [5].

4.   Conclusion

Burst-mode optical receiver ICs with a quick
response for gigabit-class PON systems have been
developed. To achieve a quick response and high sen-
sitivity at the same time, we devised a TIA circuit

with three gain modes that uses hysteresis compara-
tors and a limiting amplifier circuit with feed-forward
AOC. Using these design techniques, we fabricated
burst-mode receiver ICs. An optical receiver built
with these ICs and a PIN-PD exhibited a quick
response and high sensitivity for burst data. Its sensi-
tivity is comparable to that of a receiver with an APD.
Furthermore, the performance is good enough to sat-
isfy the GE-PON and G-PON specifications. There-
fore, these fast-response burst-mode receiver ICs will
be very useful in improving the transmission efficien-
cy of burst-mode optical communications systems.
These receiver ICs have been implemented in an opti-
cal transceiver, as described in the next paper in this
issue [12].
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