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1.   Introduction

Information technology has become a critical tech-
nology for supporting our infrastructure for daily life. 
The history of information technology is marked by 
optical signals replacing electrical signals for long-
distance communication, and this change is gradually 
extending to short-distance communication (Fig. 1). 
This trend is taking place due to bandwidth limitation 
in copper wires, as high bit-rate communication is not 
possible, and large-capacity signals cannot be sent 
when transmitting long-distance electrical signals 
over the wires. Currently, fiber-to-the-home has 
already become widespread, and the communication 
system components have become optical-based. In 
view of this trend, our research group is carrying out 
research to incorporate optical network technology in 
processor chips.

Electrical signal processing has been thought to be 
optimal for short-distance systems such as a proces-
sor chip. However, we believe that optical informa-
tion processing technologies are necessary in future 
chips for two reasons that we explain below. The rea-
sons are slightly different from the reasons optical 
fibers replaced copper wires.  

Current processor chips face the problem of dra-
matically increasing power consumption as perfor-
mance grows. Miniaturized wires and the network 

between cores consume a large portion of energy in a 
chip. This heavy consumption occurs due to Joule 
heating by electrical resistance of wires. In addition, 
the speed is limited by RC delay (resistance and 
capacitance of electrical lines). As a result, when the 
bit rate is high, energy consumption increases. 

Optical information transfer is not limited by RC 
delay nor Joule heating, so light does not need more 
energy than electrical lines at a high bit rate. This is 
the first reason we seek to deploy optical technology 
in chips. In the future, it will be necessary to reduce 
the amount of energy consumed per bit in order to 
improve processor performance. Electrical informa-
tion transfer is believed to have a lower limit of sev-
eral tens of femtojoules per bit due to RC limitations. 
This is not a serious problem at present, but in 10 to 
15 years there will be a need to overcome this barrier. 
Optical technology is considered a possible means 
for hurdling past this wall. As shown in Fig. 2, we 
envision that optical technology will be incorporated 
in future chips and will work in concert with comple-
mentary metal-oxide semiconductor (CMOS) elec-
tronic circuits [1].

The other reason for incorporating optical technol-
ogy into chips is related to a processor’s computa-
tional latency. Although processor performance is 
improving at present as described by Moore’s law, the 
bandwidth of transistors itself is already saturated, 
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leading to high latency; performance improvements 
are mainly a result of technological developments 
such as parallelization. However, when true low-
latency processing is required, the latency of existing 
processor chips becomes a problem. In the future, our 
society will become a cyber-physical system society 
in which the real world (physical world) and the 
cyber world will be intimately connected. In such a 
society, vast amounts of information from the real 
world serve as input that requires an immediate 
response from the cyber world, and computational 
latency will become a critical problem. As discussed 
below, optical technology has the possibility of dra-
matically reducing computational latency. This is 
another reason we seek to develop optical technolo-
gies that can be deployed in chips.

Next, we consider what kinds of technologies are 
necessary to address the issue of high computational 

latency.

2.   Necessity of integrated nanophotonics

To introduce optical networking technology and 
optical computational technology in processor chips, 
it is necessary to integrate a great number of ultra-
small optical devices on a processor chip. However, 
since it is inherently difficult to confine light in a small 
space, in general, optical devices are overwhelmingly 
larger than electronic devices, presenting difficulties 
for integration. 

We show in Fig. 3 the degree of integration of elec-
tronic devices over the years for which Moore’s law 
has been famous, and for comparison, the integration 
of optical devices. The scale of optical device integra-
tion began to take off in around 2000 and has been 
rising at about the same rate as Moore’s law. However, 

Fig. 1.   Information communication network at various distance scales.
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this trend will approach a limit in the near future due 
to the current size of optical devices. Unless optical 
devices become dramatically smaller, future improve-
ment in the scale of integration cannot be expected. 

We are seeking to develop technologies that can 
integrate about 1 million optical devices on a chip. 
However, this goal is difficult to achieve with existing 
technologies. In addition, simply reducing the size of 
devices is not sufficient. It is also necessary to reduce 
the energy consumption of each device. Current opti-
cal devices consume about 1 to 100 pJ per bit. As 
noted above, the information transmission cost of 
light is low. However, no matter how low the trans-
mission cost, it means nothing for the achievement of 
our goal if optical devices consume energy in the 
picojoule range. Therefore, there is a need to reduce 
their energy consumption to 1/1000th of the current 
level.   

As described above, unless there are major break-
throughs in the degree of integration and energy con-
sumption in the future, it will be difficult to integrate 
a great number of optical devices on a chip. To 
achieve this goal, we believe that the nanophotonic 
integrated technologies described in the next section 
are necessary. We are therefore conducting research 
on integrated photonics. 

Nanophotonics comprises various technologies. 
We introduce one of them here, the photonic crystal* 
[2, 3]. A photonic crystal is an artificial structure that 
modulates the refractive index with a periodicity of 

about 100 nm. It is known for its ability to realize a 
variety of new physical properties that cannot be 
achieved with conventional materials. Especially 
notable of these features are strong light confinement 
and light-matter interaction enhancement. As a result, 
photonic crystals are effective for miniaturizing opti-
cal devices and reducing energy consumption. An 
example of a silicon-based photonic crystal is shown 
in Fig. 4. The creation of this structure was made pos-
sible by applying NTT laboratories’ cutting-edge 
semiconductor processing technologies.

3.   Developments in microminiaturization and 
low-energy consumption

Our research group has developed a variety of opti-
cal devices using photonic crystals. The size of all of 
the devices is about several micrometers, which is 
1/100th to 1/1000th the size of conventional optical 
devices. Energy consumption thus can be dramati-
cally reduced. 

The graph in Fig. 5 compares the energy consump-
tion of various optical switches and their switching 
energy. For conventional devices, the products of the 
energy consumed and the switching time lie nearly on 
a straight line, indicating a trade-off. However, pho-
tonic crystal switches [4] are found in an area where 
the product of energy consumption and switching 
time is three orders of magnitude smaller. In fact, this 
product is mostly determined by the device’s size. 
Because a photonic crystal’s strong light confinement 
makes it possible to reduce the device size, ultralow-
energy consumption can be achieved without losing 
switching time. 

This principle can also be effectively applied to 
other types of devices, and we have achieved substan-
tial improvements in low-energy consumption for 
optical memory devices [5] and laser devices [6]. We 
have also succeeded in integrating more than 100 bits 
of optical memory to work together as multi-bit 
memory, demonstrating the first integration of more 
than 100 devices in nanophotonics [7].

With our recent research, we seek to further reduce 
device size. One promising technology for this is 

Fig. 3.    Change in degree of integration in transistors and 
optical devices.

1k

10k

100k

1M

10M

Year

Moore’s law

100

10

1
1960 1970 1980 1990 2000 2010 2020

N
um

be
r 

of
 d

ev
ic

es

No. of transistors
in a chip

No. of photonic
devices 
in a chip

100M

1G

* Photonic crystal: A structure in which the refractive index is peri-
odically modulated on the order of the wavelength in the medi-
um. Because optical properties are determined by light’s band 
structures, physical properties not possessed by ordinary sub-
stances can be realized. These properties are realized by creating 
100-nm-scale periodic structures using semiconductor microfab-
rication techniques on semiconductors such as silicon with a high 
refractive index.



Feature Articles

4NTT Technical Review Vol. 16 No. 7 July 2018

plasmonics technology, which is introduced in the 
article “Toward Application of Plasmonic Wave-
guides to Optical Devices” [8] in this issue. The tech-
nology creates nanoscale structures with metals such 
as gold, and plasmon modes produced on the metallic 
surfaces are used to confine light. Use of plasmonics 
results in some amount of additional loss of light, but 
light can be confined to a smaller area than with pho-
tonic crystals. It has been difficult to couple light 
from the outside for plasmonic structures. However, 
we have developed and tested a structure that couples 
a plasmonic waveguide that confines light to a region 
that is 1/1000th of the wavelength with a conven-
tional silicon waveguide. Going forward, we seek to 
further miniaturize devices by using this structure, 
and we seek to make advances in the high-perfor-
mance region shown in Fig. 5.

4.   Impact of ultralow capacitance

We have explained that nanophotonic technology 
enables the miniaturization of devices and a reduction 
in energy consumption. However, there is another 
important aspect when it comes to optical-to-electri-
cal (OE) or electrical-to-optical (EO) conversion 
devices such as photodetectors (OE) and electro-
optic modulators (EO). The most important issue for 
OE/EO conversion is capacitance. The electrostatic 
capacitance of conventional optical devices is about 
several hundred femtofarads. However, as introduced 
in the article “Ultralow-capacitance Optoelectronic 
Converters Using a Photonic Crystal” [9], OE/EO 
conversion devices that have low electrostatic capaci-
tance of 1 fF are being achieved by using photonic 
crystals. Surprisingly, this electrostatic capacity is 

Fig. 4.   Electron microscopy image of photonic crystal fabricated on silicon thin film.

The period of holes is about 400 nm and their diameter is about 100 nm. This creates a strong
light-confinement effect at the telecom wavelength band (near 1.5 µm).

Fig. 5.   Comparison of switching time and energy of various optical devices.
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already in the same order as CMOS transistors. Con-
ventionally, energy consumption for OE/EO conver-
sion in optical circuits is about several hundred fem-
tojoules. However, our research has shown that by 
achieving electrostatic capacity of 1 fF for OE/EO 
conversion devices, it is possible to reduce energy 
consumption during OE/EO conversion to the 1-fJ 
range. 

OE/EO conversion has traditionally been consid-
ered the most energy-consuming part of optical infor-
mation processing. Thus, it has been considered com-
mon sense to reduce as much as possible the number 
of times OE/EO conversion takes place. However, the 
above results indicate that there is no substantial dif-
ference in the energy consumption of OE/EO conver-
sion in a nanophotonic circuit compared with other 
processes. As a result, we believe that the way we 
think about OE/EO conversion in optical processing 
will greatly change going forward. Another example 
that is causing this change in thinking is optoelec-
tronic computing technology, introduced in the next 
section.

5.   Optical computing revisited

Vigorous research in optical computing took place 
worldwide in the 1980s and 90s. However, the results 
failed to surpass those of CMOS processors, and 
research in the technology waned. However, with the 
progress made in nanophotonics in recent years, we 
believe it is a good time to reconsider optical comput-
ing. One reason is the ultra-efficiency of OE/EO 
conversion, as mentioned above. As a result, opto-
electronic integrated computing that performs OE/
EO conversion in a computer has the possibility of 
becoming a reality. As described in the Introduction, 

there is a growing need for low-latency processing, 
and CMOS transistor latency is approaching satura-
tion at 10 ps or more. Meanwhile, as introduced in the 
article “Ultralow-latency Optical Circuit Based on 
Optical Pass Gate Logic” [10], we are investigating a 
method called optical pass gate logic, which is 
achieved by connecting electro-optical gates. With 
this method, computation is performed by light 
propagation, so shortening the length of optical gates 
can overwhelmingly reduce the computation time. 
For example, if the optical gate length can be short-
ened to 10 µm, the propagation time of light becomes 
0.1 ps, and a major reduction in latency compared 
with CMOS can be expected. 

The conceptual system we are researching is shown 
in Fig. 6. Electric input signals enter the electro-
optical gate. Computation is performed by propagat-
ing the light converted from electricity within a cir-
cuit composed of gates and the interference optical 
system. The light is finally converted to electrical 
signals by the photodetector to complete the compu-
tation process. Using this system, we have succeeded 
in reaching our goal of implementing a wide range of 
computing devices such as adders, multipliers, multi-
ply accumulators, pattern matchers, and neural net-
work computers that perform operations at the speed 
of light propagation. We are continuing to research 
the design and fabrication of specific circuits.

6.   Integration of nanomaterials 
and nanophotonics

Electronic integrated circuits can be made of silicon 
and silicon-oxide devices. These two materials with 
dopants are sufficient to realize a variety of function-
alities. In contrast, in optical integrated circuits,  

Fig. 6.   Optical pass gate-based computation circuit.
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different materials are required to achieve each func-
tion, so determining how to integrate functional 
materials is critical. In particular, finding a way to 
combine functional materials having a small volume 
with nanophotonic structures is key. In recent years, 
various nanoscale materials showing fascinating 
properties have been developed. However, because 
such nanomaterials are much smaller than the wave-
length of light, adequate performance cannot be 
achieved, as these devices cannot confine light. We 
are therefore seeking to create new platforms by com-
bining a variety of nanomaterials such as nanowires, 
graphene, and carbon nanotubes with nanophotonic 
structures. In the article “Compound Semiconductor 
Nanowire Laser Integrated in Silicon Photonic Crys-
tal” [11], we introduce research on lasers that utilize 
a resonator formed by such a platform. The resonator 
is induced by a compound semiconductor nanowire 
having a diameter of 100 nm joined to a silicon pho-
tonic crystal.

7.   Toward the creation of novel 
optical properties

Our group is also looking for novel functions and 
searching for novel optical properties in nanopho-
tonic structures. In the article “Control of Light with 
Exceptional Points in Coupled Photonic Crystal 
Lasers” [12], we introduce research findings related 
to a parity-time (PT)-symmetric optical system in 
which gain and loss are periodically arranged. In a 
structure in which gain and loss are arranged in accor-
dance with certain rules, special symmetry (PT sym-
metry) is satisfied where parity (spatial axis) and the 
time axis return to their original conditions when 
inverted simultaneously. However, in recent years it 
has been discovered that such a system has properties 
that lead to the breakdown of conventional knowl-
edge of optical properties, and vigorous research is 
being conducted in this field. We are researching a 
nanoresonator array with PT symmetry. In this arti-
cle, we describe strange properties shown by this 
array. 
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1.   Introduction

Optical technology has played an important role in 
the optical transmission of information in telecom-
munication and data communication. Consequently, 
there is currently a demand for optical technology for 
communication over ultrashort distances (millimeter 
order) within computing chips and for the computa-
tional processing itself [1]. There is thus a need for 
combining optical technology with mature comple-
mentary metal-oxide semiconductor (CMOS) inte-
gration technology, and recent research on the fabri-
cation and integration of small optical elements on 
silicon substrates has been vigorous. However, con-
ventional optical elements, and particularly optoelec-
tronic converters such as optical transceivers, are 
large and consume large amounts of energy. There-
fore, cost-performance is significantly low when such 
elements are connected to CMOS circuits for on-chip 
computation applications, so a fundamental change 
in the elemental devices such as photodetectors 
(optical-to-electrical (OE) converters) and optical 
modulators (electrical-to-optical (EO) converters) is 
needed.

Since most optoelectronic conversion devices 
include semiconductor p-i-n (p-type, intrinsic, n-type 
semiconductors) junctions and metal electrodes, the 
devices themselves have a certain capacitance com-

ponent. In the case of a photodetector (PD), absorp-
tion of light produces a charge (Q) on its capacitance 
(C), and a voltage (V) is generated for driving the 
electronic circuit. Although there are various operat-
ing principles for a modulator, one involves modulat-
ing light by applying voltage to produce a charge (Q) 
on capacitance (C) to create an electric field within 
the structure. In any case, with the relationship Q = 
CV, the required charge Q can be reduced by lower-
ing the capacitance and operating voltage of the 
device, thus reducing energy consumption. For that 
purpose, it is necessary to restrict the light to as small 
an area as possible to enable a strong interaction of 
light and material. An effective means of achieving 
this is to use a nanostructure. At NTT, we have suc-
ceeded in developing PDs and modulators that can 
operate with low latency and extremely low capaci-
tance by combining the nanostructure known as a 
photonic crystal (PhC) with an indium phosphide 
(InP) semiconductor, a material that has been impor-
tant in the manufacture of optical communication 
devices, for which NTT has excellent fabrication 
technology.

2.   Photonic-crystal photodetector (PhC-PD)

Conventional PDs incorporate a transimpedance 
amplifier (TIA) to generate the voltage required by 

Ultralow-capacitance Optoelectronic 
Converters Using a Photonic Crystal
Kengo Nozaki, Shinji Matsuo, Takuro Fujii, Koji Takeda, 
Eiichi Kuramochi, Akihiko Shinya, and Masaya Notomi

Abstract
The fusion of optical technology and electronic circuitry is the key to increasing capacity in any type 

of information processing, but optoelectronic integrated processing on a chip requires compact and 
energy-efficient photodetectors (optical-to-electrical (OE) converters) and optical modulators (electrical-
to-optical (EO) converters). This article introduces such OE/EO converters that are implemented using 
a photonic crystal nanostructure and thus feature low capacitance and an extremely low energy cost.
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the electronic circuit after the photocurrent Ipd is pro-
duced by light absorption (Fig. 1(a)) [2]. However, 
such devices have major problems when there is 
dense integration on chips, including high energy 
consumption on the order of 100 fJ/bit, as well as 
having a large footprint and delay. Structural simpli-
fication can be considered for PDs that are more 
energy-efficient, and one approach is to connect a 
high load resistance Rload to the PD for a simple con-
figuration that performs light-to-voltage conversion, 
where the generated voltage is given by V = IpdRload 
(Fig. 1(b)). In this case, there is a trade-off in that the 
light-to-voltage conversion efficiency is proportional 
to the load resistance Rload, but the operating band is 
inversely proportional to the RC time constant, so this 
approach is not feasible for conventional devices. To 
achieve high performance in both aspects at the same 
time requires reduction of the device capacitance C, 
and if that problem can be solved, an amplifier-free 
PD may be possible. At NTT, we are working toward 
developing such a PD by using a PhC nanostructure 
[3].

The PhC-PD structure is illustrated in Fig. 2(a). 
The two-dimensional array of airholes that constitute 
the PhC strongly confine light within the waveguide 
because of the periodicity of the large refractive index 
difference, so various kinds of optical devices can be 
made smaller. The key steps in the fabrication of PDs 
are the embedding of an indium gallium arsenide 

(InGaAs) light absorption layer in an InP thin-film 
(250 nm thick) using highly precise semiconductor 
embedding heterostructure fabrication technology 
and the formation of a PhC with high positioning 
accuracy by electron-beam lithography and plasma 
etching [4]. As shown by the cross-section photo-
graph in Fig. 2(b), a compact light absorber is formed 
within a PhC waveguide, and the PD is successfully 
fabricated by forming lateral p-i-n junctions. The 
strong light confinement in the PhC waveguide pro-
vides sufficient light absorption efficiency to enable 
an optical responsivity of 1 A/W even in an extremely 
short PD length (1.7 µm) (Fig. 3(a)). This structure of 
a thin-film and short PD length sandwiched between 
a low-dielectric-constant material (air) makes it theo-
retically possible to suppress the capacitance of the 
p-i-n junctions to 0.6 fF (Fig. 3(b)). Also, the dynam-
ic characteristics (frequency response in the 28.5-
GHz operating band and the eye diagram for a 
40-Gbit/s optical signal) reveal that sufficiently high 
efficiency and high speed are both achieved, even 
with such an ultrasmall PD (Fig. 3(c)). 

The performance of various small PDs is compared 
in Table 1. While our PD has about the same high 
optical responsivity and operating bandwidth as the 
germanium PDs that are being actively researched 
based on a silicon photonics platform [5], it also 
achieves an ultrasmall absorption layer and ultralow 
capacitance, features contributed by the nanostructure 

Fig. 1.   Low-energy receiver configuration with low-capacitance photodetector.
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PD. Nanowire [6] and plasmon antenna structures [7] 
also hold promise for miniaturization, but improve-
ment of light responsivity is currently a problem. We 
therefore consider the PD described here as the most 
balanced candidate.

We have investigated light-to-voltage conversion 
with a circuit in which our PD was connected to a 
kΩ-order load resistor. Measurements of the voltage 
generated at the load resistor revealed high conver-
sion efficiency of up to 4 kV/W, which is similar to or 
higher than that achieved with a PD that integrates an 
amplifier. Although the operating bandwidth is lim-
ited to several gigabits per second because of the 
parasitic capacitance of the metal wiring, the opera-
tion at 40 Gbit/s is possible when considering the 

theoretical PD capacitance of 0.6 fF. Photodetection 
while connected to such load resistance can be consid-
ered a step towards an amplifier-free photoreceiver. 

We have also recently discovered the possibility of 
achieving a bias-free PD. Conventional PDs apply an 
external reverse bias voltage to the p-i-n junctions for 
fast response. In that case, however, the power con-
sumption corresponds to the product of the photocur-
rent and the bias voltage. Ideally, PD operation with-
out bias is desirable, and if it can be achieved togeth-
er with the amplifier-free operation described above, 
an extremely low-power-consumption PD that oper-
ates on optical energy alone can be expected (Fig. 1(c)) 
[8]. The problem is that when a high load resistance 
connection is considered, a forward voltage that  

Fig. 2.   PhC-PD. 
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corresponds to the generated voltage is applied to the 
PD. Although that is in the same current-voltage 
operating region as solar cells, high-speed operation 
on the gigahertz order is not expected because high-
speed carrier transport is difficult. 

With our PD, however, high-speed operation can be 
expected even under forward voltage because of the 
efficient absorption and carrier extraction in the 
depletion layer that are enabled by the narrow wave-
guide cross-section (Fig. 1(b)). Actually, operation at 
a high speed of 20 Gbit/s and high responsivity has 
been observed, even with a forward voltage of +0.4 V 
applied. This feature is not seen with conventional 
PDs. These results suggest the feasibility of an 
extremely small, energy-efficient photoreceiver that 
operates on ultralow optical energy of about 1 fJ/bit.

3.   PhC optical modulator

Optical modulators, which do the reverse of PDs by 
converting an electrical signal to an optical signal, 

must also be made small and energy-efficient for 
implementation in photonic integrated circuits. For 
the optical pass-gate logic circuit that we propose, 
low latency is essential, and hence, a short length is 
required [9]. NTT has also fabricated a small electro-
absorption modulator (EAM) that employs PhC fab-
rication technology in the same way as the PD 
described above (Fig. 4) [10]. The embedded layer is 
composed of InGaAsP (indium gallium arsenide 
phosphide), which has an absorption wavelength of 
1.45 µm. Applying a reverse voltage produces the 
Franz-Keldysh effect*, increasing light absorption to 
modulate the output light intensity. In the experiment, 
high-speed optical modulation such as the eye dia-
gram for 40-Gbit/s and 56-Gbit/s signals was 
obtained. 

Table 1.   Comparison of small PDs.

Ge waveguide [5] This work
(InP PhC)

Nanowire [6] Plasmon
nanoantenna [7]

Absorber volume 3.1 µm3 0.11 µm3 0.05 µm3 0.0007 µm3

Capacitance 2–8 fF 0.6 fF <<1 fF <<1 fF 

Responsivity 0.8 A/W 1 A/W 0.01 A/W 0.0001 A/W 

Bandwidth 45 GHz 28 GHz N/A N/A 

Fig. 4.   PhC optical modulator.
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Research has been done on EAMs that use SiGe 
(silicon germanium) or other such core material on a 
silicon substrate for application as on-chip optical 
modulators [11]. Such devices require a high reverse 
bias voltage (> 4 V), and the high energy dissipation 
(7 fJ) due to the photocurrent from absorption and the 
bias voltage has been a significant bottleneck. Our 
PhC EAM averts that problem because it operates on 
a low reverse bias voltage (–0.2 V), significantly 
reducing energy dissipation (0.2 fJ). At the same 
time, the low charging energy of 1.6 fJ/bit due to the 
device capacitance (13 fF) and signal voltage (0.7 V) 
results in an operating energy of 1.8 fJ, which is much 
lower than that for conventional devices. In practice, 
incident light energy is also required for optical trans-
mission, so in the future we will need to conduct an 
overall evaluation in an optical transmission system 
that takes the optical energy required on the PD side 
into account. 

4.   Outlook

We have described optoelectronic conversion at an 
overwhelmingly lower operating energy than is pos-
sible with conventional technology and is achieved 
with small PDs and EAMs that employ PhC nano-
structures. We can expect that future development 
will go beyond these single devices and achieve 
multi-functionality through integration. For example, 
the short-distance optical link for transmitting the 
signal between the modulator and the receiver is 
promising for application to high-speed data sharing 
within many-core chips. The O-E-O optical wave-
length converter fabricated by close integration of the 
PD and modulator for transferring the optical signal 
to a different wavelength light is also possible. The 
extremely low operating energy compared to conven-
tional devices enabled by the technology described 
here is a major differentiating factor, and application 

to on-chip optical signal routing and optical comput-
ing by combining the functions can be expected. 
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1.   Enhancing interaction with plasmonic 
waveguides and related issues

The use of nanomaterials*1 that have unique prop-
erties and functions has been increasing recently. The 
interaction between light and materials strongly 
affects device characteristics and is thus very impor-
tant in implementing useful optical devices. Howev-
er, the size scale of nanomaterials is small compared 
to optical wavelengths, so efficient interaction 
between light and nanomaterials is not easily 
achieved. To address this issue, NTT has been study-
ing coupling systems for nanomaterials and photonic 
crystal nanostructures that are capable of strong light 
confinement, and we are developing the nanowire 
laser described in the article, “Compound Semicon-
ductor Nanowire Laser Integrated in Silicon Photonic 
Crystal” [1].

However, optical elements that are conventionally 
used in optical integrated circuits, including photonic 
crystals, are generally based on dielectric materials. 
For that reason, the limit on the area of light confine-
ment is determined by the optical wavelength. NTT is 
taking a different approach to address this issue by 
investigating optical device applications of plasmonic 
waveguides, which are not limited in size by the  
optical wavelength. Plasmonic waveguides can be 
extremely small, on the order of tens of nanometers. 

Our objective is to use these features to enhance the 
interaction of light and nanomaterials and realize the 
development of unprecedented optical devices.

Plasmonic waveguides consist of metal and dielec-
tric materials (semiconductors or insulators). Light 
propagates at the interface of the two materials as 
surface plasmons that accompany an electromagnetic 
wave. The electromagnetic wave is localized near the 
interface as near-field light, making it possible to 
confine the light in a region that is smaller than the 
light wavelength. Plasmonic waveguides can have 
various structures as combinations of metal and 
dielectric materials, but NTT has adopted the metal-
insulator-metal (MIM) structure for research. In an 
MIM waveguide, light is concentrated in the insulator 
that serves as the core, so smaller cores produce 
stronger light confinement and a waveguide that has 
a small propagating mode. The core size of an MIM 
waveguide can thus extend into the deep-subwave-
length regime*2, which is not possible with dielectric 
waveguides. That enables efficient interaction 
between light and nanomaterials, which holds promise 
for achieving optical devices that have unprecedented 

*1 Nanomaterials: Two-dimensional materials such as graphene, 
nanowires, or quantum dots with nanoscale dimensions.

*2 Deep-subwavelength regime: An area that is very small compared 
to the wavelength; the criterion used here is a waveguide core 
cross-section area smaller than (λ /n)2/1000.

Toward Application of Plasmonic 
Waveguides to Optical Devices
Masaaki Ono, Hideaki Taniyama, Eiichi Kuramochi, 
Kengo Nozaki, and Masaya Notomi

Abstract
The size of a plasmonic waveguide is not limited by the optical wavelength. This enables plasmonic 

waveguides on the order of several tens of nanometers in length, which is not possible with dielectric 
waveguides, and exceptionally strong light confinement and efficient interaction with nanomaterials that 
have various unique properties become possible. However, such waveguides are not easily introduced in 
optical integrated circuits, so a three-dimensional plasmonic mode converter is required.
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characteristics. 
However, deep-subwavelength MIM waveguides 

are not easily incorporated into optical integrated 
circuits. All plasmonic waveguides, including MIM 
waveguides, normally have associated absorption 
loss due to the metal. That loss becomes prominent 
when the core is small, and the loss can rise to about 
1 dB/μm for cores in the deep-subwavelength regime, 
making it difficult to construct an optical integrated 
circuit with MIM waveguides alone. We therefore 
consider that the ideal configuration is to use MIM 
waveguides only for functional devices such as the 
optical detectors and modulators, while using con-
ventional dielectric waveguides such as Si (silicon) 
waveguides for long-distance signal propagation. 
Implementing such a configuration requires highly 
efficient coupling of dielectric waveguides and deep-
subwavelength MIM waveguides. However, the 
shape and size of the propagating modes of the deep-
subwavelength MIM waveguide and the dielectric 
waveguide differ greatly, so a highly efficient plas-
monic mode converter is needed.

2.   Design of plasmonic mode converter

NTT has been working on a highly efficient plas-
monic mode converter for conversion between a 

deep-subwavelength MIM waveguide that uses gold 
for the metal and air as the insulator, and a Si-wire 
waveguide (Fig. 1(a)) [2]. The propagating modes for 
the two types of waveguides differ greatly in size and 
shape (Fig. 1(b), (c)), so the mode conversion must 
involve a size reduction in both the lateral and vertical 
directions, which means that three-dimensional (3D) 
mode conversion is necessary. Lateral mode conver-
sion between an MIM waveguide and a Si-wire wave-
guide has been reported previously [3–5], but those 
methods involved conversion between waveguides of 
about the same height and performed only two-
dimensional (2D) mode conversion by compression 
only in the lateral direction with a laterally tapered 
structure. The use of a structure that is tapered in both 
the vertical and lateral directions has also been pro-
posed as a means of 3D mode conversion [6], but the 
complexity of the fabrication process makes that 
approach impractical for application to optical inte-
grated circuits. 

NTT therefore investigated a structure that can 
achieve highly efficient mode conversion for wave-
guides of greatly different heights with only a 2D 
tapered structure. We discovered that efficient mode 
conversion between a deep-subwavelength MIM 
waveguide and a Si-wire waveguide can be achieved 
by introducing a small air gap between the Si and the 

Fig. 1.   Schematic structure and propagation mode.
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metal.
The calculated propagating mode of 1.55-μm input 

light in a Si-wire waveguide, mode converter, and 
MIM waveguide is shown in Fig. 2. We can see from 
the figure that the side lobes of the propagating mode 
of the Si-wire waveguide are attracted to the metal 
parts placed near the Si waveguide, and there is cou-
pling with the MIM waveguide that differs greatly in 
height via the air gap. The coupling efficiency 
depends on structure parameters such as the taper 

length ltaper and the air gap width wgap (Fig. 1(a)).
The coupling efficiency for various values of the air 

gap width is shown in Fig. 3(a). We can see from the 
figure that good coupling efficiency is not obtained 
without the air gap, but introducing a small air gap of 
about 20 nm dramatically improves the coupling effi-
ciency. However, the coupling efficiency gradually 
decreases as the air gap width increases, and for a 
width of 100 nm, the coupling efficiency is the same 
as without the air gap. Furthermore, without the air 

Fig. 2.   Calculated electric field distribution in the plasmonic mode converter.
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gap, most of the propagating light is absorbed or scat-
tered by the metal part of the mode converter. When 
the gap is wide, on the other hand, the side lobes of 
the Si-wire waveguide cannot be sufficiently attracted 
by the metal, and most of the light is scattered. We 
can thus see that a very small air gap is important to 
achieve efficient mode conversion. 

The taper length is also an important parameter in 
determining the coupling efficiency. The coupling 
efficiency for various taper length values is shown in 
Fig. 3(b). As the taper length increases, the coupling 
efficiency increases to reach a maximum in the vicin-
ity of 600 nm and then decreases for longer taper 
lengths. Although longer taper lengths generally 
reduce loss in mode conversion, absorption by the 
metal reduces the coupling efficiency in a plasmonic 
mode converter because of loss due to absorption by 
the metal. The result obtained here shows that highly 
efficient mode conversion (about –1 dB) between a 
deep-subwavelength MIM waveguide (50 nm × 20 
nm core) and a Si-wire waveguide (400 nm × 200 nm 
core) is possible with a mode converter that has a 
taper length of 600 nm and an air gap width of 20 nm. 
These predicted characteristics are very good in terms 
of coupling efficiency, converter length, and the 
reduction in waveguide core size compared to previ-
ously reported plasmonic converters of the same type.

3.   Fabrication and evaluation of plasmonic 
mode converter

The fabricated device comprises a Si-wire wave-
guide, a plasmonic mode converter, and an MIM 
waveguide. The Si-wire waveguide and the Si part of 
the plasmonic mode converter are fabricated on a 
silicon-on-insulator (SOI) substrate*3 by electron 
beam lithography and etching, and then the metal 
parts are formed by electron beam lithography and 
evaporation. This series of processes uses conven-
tional nanostructure fabrication techniques and is 
therefore compatible with the processes used for 
other Si photonic devices. This enables integration 
with other optical devices on the same substrate, 
which is very important for device integration.

A scanning electron microscopy image of the fabri-
cated sample shows that the mode converter was 
fabricated with precise positioning (Fig. 4). We have 
successfully fabricated a plasmonic mode converter 
with an air gap width of 40 nm for an MIM wave-
guide that has a core size of 50 nm × 20 nm. Although 
the process described here may seem simple, it is not 
easy because of the positional accuracy required for 

fabrication at a scale of 20 nm or less. This process is 
possible with NTT’s high-level nanostructure fabri-
cation techniques.

The coupling efficiency of a fabricated mode con-
verter for an MIM waveguide that has a core size of 
50 nm × 20 nm is shown in Fig. 5. The coupling effi-
ciency in the fabricated mode converter is as high as 
–1.7 dB when the air gap width is 40 nm and the taper 
length is 600 nm, showing good agreement with the 
calculated value (–1.4 dB). The dependence of cou-
pling efficiency on air gap with and taper length pre-
dicted from the calculation results is also exhibited 
for various air gap width and taper length values. We 
have achieved highly efficient mode conversion (–1.7 
dB) between a deep-subwavelength MIM waveguide 
(50 nm × 20 nm core) and a Si-wire waveguide (400 
nm × 200 nm core) with a mode converter that has a 
taper length of 600 nm and an air gap width of 40 nm. 
Furthermore, the core size of the connected MIM 
waveguide is (λ/n)2/2000 (λ: wavelength; n: refrac-
tive index). Previously, the smallest core size of the 
connected lateral MIM waveguide was (λ/n)2/120 
[3], so these results indicate that we achieved a large 
reduction in the waveguide core size. Achieving 
highly efficient mode conversion with a taper length 
of less than 1 μm is also important for reducing the 
device footprint.

4.   Future development

We have described here NTT’s efforts to introduce 
the size advantage of plasmonic waveguides to  

Fig. 4.    Scanning electron microscopy image of the 
fabricated sample.
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*3 SOI substrate: A substrate structure in which a SiO2 (silicon di-
oxide) layer is sandwiched between Si layers. The thin surface 
layer of Si is used as a waveguide.
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optical integrated circuits and also touched on the 
merits and problems of plasmonic waveguides. 
Development of the first highly efficient 3D mode 
converter enables introduction of waveguides that 
have a deep-subwavelength core to optical integrated 
circuits. In addition to reducing the size of conven-
tional devices, this achievement paves the way for the 
potential implementation of unprecedented new 
devices in combination with nanomaterials that have 
unique properties. 
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Fig. 5.   Coupling efficiency of fabricated plasmonic mode converter.
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1.   Fusion of heteromaterials with nanophotonics

The integration of compound semiconductors on 
silicon is very important for optoelectronic devices 
for optical interconnection, optical computing, and 
on-chip devices. Wafer bonding is generally used to 
bond compound semiconductors and silicon, which 
are dissimilar materials. Although that method 
enables the integration of heteromaterials such as 
compound semiconductors on silicon, it involves 
problems such as the difficulty of bonding and the 
difficulty of obtaining the utmost optical function of 
the optical elements, which themselves are com-
pounds, due to overheating. 

In our work, we have adopted a configuration in 
which high-performance optical elements made of 
optically low-loss silicon are prepared and compound 
semiconductor nanowires are placed as gain parts in 
the necessary locations. This fabrication process does 
not involve heating, so damage due to overheating 
does not occur. Moreover, the optical loss is low 
because the device is based on silicon. Another 
advantage is that the environmental impact is very 
low because there is minimal use of the compound 
semiconductor. Accordingly, this device can be con-
sidered an ideal heteromaterial hybrid optical device.

The device described here is a new nanolaser with 
a hybrid structure comprising silicon photonic crystal 
and a compound semiconductor. The nanowire is a 
one-dimensional structure that can be fabricated on a 
substrate in large numbers at one time. The nanowire 
can serve various purposes, including a quantum 
well, quantum dot, and p-i-n (p-type, intrinsic, n-type 
semiconductors) junction, which can be controlled by 
switching the gas that is supplied during growth. 
However, the nanowires themselves are too small to 
efficiently provide strong light confinement. Silicon 
photonic crystal, on the other hand, can provide very 
efficient light confinement without optical loss, but 
silicon is an indirect transition semiconductor and 
cannot itself emit light. 

In our work, we fabricated a nanolaser by introduc-
ing an indium arsenic phosphide and indium phos-
phide (InAsP/InP) nanowire quantum well into a sili-
con photonic crystal to form a micro-cavity (Fig. 1). 
This combination can be considered a landmark 
structure that compensates the weak light confine-
ment of the nanowire and the absence of light emis-
sion by the photonic crystal with the light emission of 
the nanowire and optical confinement of the photonic 
crystal. This type of structure was used to demon-
strate the world’s first nanowire laser that operates 

Compound Semiconductor Nanowire 
Laser Integrated in Silicon Photonic 
Crystal
Masato Takiguchi, Atsushi Yokoo, Kouta Tateno, 
Guoqiang Zhang, Eiichi Kuramochi, and Masaya Notomi

Abstract
Compound semiconductor nanowires were integrated in silicon photonic crystals to form nano-cavi-

ties in arbitrary places, achieving the first nanowire laser that oscillates continuously at communication 
wavelengths. High-speed modulation at 10 Gbit/s was demonstrated. This laser is the ultimate hetero-
structure material hybrid device, having gain material only within the cavity.
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continuously in the communication wavelength band 
[1].

2.   Fabrication of hybrid nanowire devices

This device is fabricated by transferring nanowires 
onto a silicon substrate and then moving them onto 
the photonic crystal with the probe of an atomic force 
microscope (AFM)*1 [2]. This method makes it pos-
sible to place any nanomaterial freely on a photonic 
crystal or other optical circuit. 

The nanowires used here were fabricated by the 
VLS (vapor-liquid-solid) method using metal-organ-
ic vapor phase deposition [3]. The InP nanowires are 
grown from gold particles 40 nm in diameter that are 
dispersed on an InP (111) B substrate. One hundred 
InAsP layers are formed internally by supplying arse-
nic for a short time during the nanowire growth.

The light emission characteristic of the nanowire 
quantum well has a spectrum peak in the 1.3-µm 
band, and the polarization direction of the emitted 
light is controlled to be perpendicular to the nanowires. 
The nanowires are 2.4-µm long and have an average 
diameter of 114 nm (82 nm minimum and 144 maxi-
mum). The silicon photonic crystal has a diameter of 
200 nm, a lattice constant of 370 nm, a trench width 
of 150 nm, and a depth of 115 nm. The nanowires are 
placed in grooves in the prefabricated photonic crys-
tal. The photonic band at the location where the 
nanowires are placed is shifted towards shorter wave-
lengths, and the optical characteristics are changed 
only at those locations. Because light of particular 
wavelengths is confined in those locations, cavities 

are formed. Such photonic crystal cavities are called 
mode gap cavities (Fig. 2(a)).

The polarization of the cavity mode is consistent 
with the polarization of the nanowire itself, so light 
can be extracted efficiently. From simulations of the 
light intensity when nanowires are placed in the pho-
tonic crystal (Fig. 2(b) and (c)), we can see clearly 
that oscillators are formed, and light is strongly con-
fined at the nanowire locations. Because cavities are 
formed in the optical waveguide by simple placement 
of nanowires, this is a very convenient structure.

3.   Nanowire laser

Next, we investigated the oscillation of the laser 
produced by the nanowires. A conceptual diagram of 
the measurement and the measured spectra before 
and after oscillation produced by placement of the 
nanowires on a photonic crystal are presented in 
Fig. 3(a) and (b). Light emission was measured using 
the microscopic photoluminescence method. The 
device was illuminated with light to excite the 
nanowires, and the light emitted by the nanowires 
was measured with a detector. The specimen was 
cooled to a temperature of 4K. The emission spec-
trum is steep, as seen in Fig. 3(b). That is the spec-
trum of the nano-oscillator induced in the photonic 
crystal by the nanowire. Furthermore, when the  

Compound semiconductor nanowire

Our hybrid structure

Silicon photonic crystal

Fig. 1.   Conceptual diagram of hybrid structure of nanolaser.

*1 AFM: An instrument that can visualize the surface of a specimen 
by using a sharp probe attached to the tip of a cantilever to scan 
the surface and measure the inter-atomic force acting between the 
probe and the specimen surface. In the process reported here, the 
scanning function of the probe is used to position nanowires.
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Fig. 2.   Nanowire induced photonic crystal cavity.
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excitation power is high, the laser oscillates with 
sharp increases in emission intensity. We investigated 
this effect in detail by measuring the nanowire emis-
sion while varying the excitation power (Fig. 3(c)) 
(light-in, light-out (L-L) measurement). The depen-
dence of the emission and the spectral linewidth of 
the cavity on the excitation strength is shown in the 
figure. Generally, the emission sharply increases, and 
the cavity spectrum width becomes narrow when the 
laser oscillates, and the result presented here exhibits 
that behavior. The emission becomes strong at the 
excitation power of 0.15 mW (the oscillation thresh-
old of the laser), confirming laser oscillation with 
certainty.

Oscillation of the laser can also be confirmed by 
investigating photon statistics. Correlation measure-
ments can be used to investigate the time intervals 
between photons. The light prior to laser oscillation is 
called spontaneous emission light and is character-
ized by a large variance in intensity with short time 
intervals between photons (referred to as bunching 
because the photons are close together). The light 
after laser oscillation, on the other hand, is called 
coherent light, because the intensity is stable and 
there is a uniform distribution of the intervals between 
photons. The measurements require detection of a 
photon-level signal, so we used a highly sensitive 

superconducting single-photon detector*2 to deter-
mine the correlation function (g2(t)). Prior to oscilla-
tion, the correlation for this function is at t = 0, and 
bunching is observed (g2(0) > 1). However, that 
bunching signal is eliminated once the laser oscilla-
tion begins. The effect of change in the excitation 
power on g2(t) is that the bunching signal is elimi-
nated and the laser transition occurs (Fig. 4). Laser 
oscillation is confirmed to continue after that point.

Next, we conducted communication experiments 
with bit signals produced by this laser. The concep-
tual diagram for the experiment and the input signal, 
output signal, and eye diagram are presented in 
Fig. 5. The input signal was a 10-Gbit/s pseudoran-
dom pattern produced by a pulse pattern generator. 
The input light was modulated by an electro-optic 
modulator, and the signal output from the nanolaser 
was integrated by the superconducting single-photon 
detector for measurement. Normally, a sampling oscil-
loscope and photodetector are used for measurement, 

Fig. 4.   Photon correlation measurement of nanowire laser.
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*2 Superconducting single-photon detector: A system that detects 
photons by using a superconductor with a current bias that is just 
below the critical current as an optical detector. A photon is de-
tected when the heat of a single photon breaks the superconduct-
ing state, increasing the resistance and producing a voltage pulse 
that is measured. High-speed photons can thus be measured at 
very high temperatures.
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but the extremely weak light emitted by the nanolaser 
is measured in free space, so a highly sensitive detec-
tor is used. The light used for excitation has sufficient 
power to produce laser oscillation. We can see that the 
obtained waveform is the same as the waveform of 
the input signal. We analyzed the signal to obtain an 
eye diagram. The open center of the eye pattern indi-
cates that correct communication of the bit signal is 
possible.

4.   Future development

We achieved continuous-wave laser oscillation at 
communication wavelengths by introducing com-
pound semiconductor nanowires into silicon photonic 
crystals. We also confirmed that laser oscillation can 
be evaluated with photon statistics as well as with 
L-L characteristics. We further confirmed that the 
laser can be modulated directly at about 10 Gbit/s by 
modulating the excitation light with a pseudorandom 
signal. This demonstration of a communication-band 
nanowire laser and confirmation of modulated opera-
tion of a single nanowire laser are world-first achieve-
ments. 

While the demonstration described here was per-

formed at low temperature, we are aiming for room-
temperature operation in the future. The current 
nanowires and optical confinement are insufficient. 
Improvement will require thicker nanowires and con-
trol of non-emissive re-coupling at the nanowire sur-
face. The structure of the photonic crystal should also 
be considered. We also plan to fabricate a current 
injection structure by using nanowires that have a 
p-i-n structure. In the future, we plan to develop new 
on-chip devices through on-chip integration of cur-
rent-injected nanowire lasers, nanowire optical detec-
tors, and nanowire optical modulators.
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Fig. 5.   Modulation measurement of nanowire laser.
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1.   Constraints of optical control in on-chip 
optical devices

Optical communication is currently at the stage 
where it is possible to transmit data at speeds on the 
order of 10 Tbit/s through an optical fiber. It may 
seem that light can be controlled freely; however, 
there are limits to the varieties of optical control that 
are possible in on-chip optical circuits, and there are 
still problems to be solved for many of the practical 
applications of these circuits. 

The difficulty of optical control arises from the fact 
that photons have no mass or charge. In other words, 
it is not possible to control the movements of photons 
based on conservative forces such as gravity or elec-
tromagnetism arising from the energy potential. 
Therefore, in the range that we normally see, light 
mainly manifests as electromagnetic (EM) waves. 
From the Maxwell equation describing the behavior 
of light, we can derive the property called Lorentz 
reciprocity (Fig. 1). In systems that are stationary in 
time and exhibit a linear response to EM waves, this 
means that scattering matrices showing their EM 
input-output relationship will have a symmetrical 
form. In other words, the system’s optical path has 

exactly the same transmittance (or mode conversion 
rate) in one direction as that in the opposite direction, 
and there is no anisotropy. In photonics, therefore, it 
is not even straightforward to create transistors and 
diodes (optical isolators), which are common in elec-
tronics.

Currently, purely on-chip photonic components, for 
which technologies have been well established, 
include waveguides, lasers, intensity and phase mod-
ulators, detectors, and interference switches. These 
components can generally achieve most basic func-
tions such as the generation and detection of coherent 
light, the control of intensity and phase (modulation), 
and the switching of optical paths. As long as they are 
in static operations, they will not significantly violate 
the abovementioned Lorentz reciprocity. To perform 
optical control beyond these constraints, the use of 
other well-known phenomena such as magneto-optic 
effects and nonlinear optical effects can be consid-
ered. However, particularly in microphotonics and 
nanophotonics, such effects are generally restricted 
due to the small device sizes and low-intensity input 
light available. Moreover, there are severe require-
ments of integration and processing techniques for 
heterogeneous materials. As a result, efforts to develop 
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devices of this sort are still at the research stage. 
In contrast, the field of parity-time (PT)-symmetric 

optics or exceptional point optics has been rapidly 
developing, partly because it is based on the prospect 
of achieving new optical functions by making use of 
existing technologies.

2.   Novel optical phenomena based on 
PT symmetry (exceptional points)

The concept of PT symmetry was first proposed in 
1998 by Carl Bender of Washington University (Mis-
souri, USA) and Stefan Boettcher, who is currently at 
Emory University (Georgia, USA) [1]. This work was 
originally aimed at expanding the theoretical frame-
work of quantum mechanics. 

The P in PT symmetry represents space inversion, 
which is the operation of reversing coordinates 
around a certain origin in the physical system under 
consideration. Thus, this operation changes an 
object’s coordinate (position operator) from x to −x 
and its momentum (momentum operator) from p to 
−p (Fig. 2(a)). 

The T in PT represents time inversion, which is the 
operation of reversing the direction in which time 
flows. Thus, it also inverts the sign of an object’s 
momentum. In addition, for systems interacting with 
the external environment (reservoir), an increase in 
the number of particles (signed rate +g) changes to a 
decrease (−g), and vice versa. In PT symmetry, when 
these two operations are performed simultaneously, 
the system behaves in the same way as before the 
operation. In other words, it is a symmetry that repre-
sents invariance in the energy operator (Hamiltoni-
an).  

In standard quantum mechanics, closed systems are 
primarily handled using Hermitian Hamiltonian 
matrices and the Schrödinger equation. Meanwhile, if 
we introduce an increase or decrease in the number of 

particles because of the external environment (non-
Hermitian term), then imaginary components arise in 
energy eigenvalues. In other words, this leads to the 
inconsistent result in quantum theory, where the 
energy is not an observable quantity. However, under 
PT symmetry, this sort of local change in the number 
of particles can be balanced in the entire system, so 
the energy eigenvalues can be maintained as observ-
able real quantities.

It is not easy to verify this concept experimentally 
in quantum systems that rely on the precise manipula-
tion of small numbers of particles. However, the 
observation in 2008 that an analogy to PT symmetry 
is possible in optical systems based on classical elec-
tromagnetism [2] resulted in an explosion of research 
on PT-symmetric optics. This is because it was origi-
nally recognized in optics studies that gain by stimu-
lated emission and loss in absorption media are natu-
ral effects. Furthermore, we can approximate the 
behavior of light propagating in a material with a 
thickness on the order of one wavelength (paraxial 
beam) using the Schrödinger equation. Thus, we can 
argue that EM waves can also exhibit properties 
analogous to PT symmetry, which was originally 
considered in the context of the quantum mechanical 
wavefunction. 

As a result of this groundbreaking work, it was 
recognized that a PT-symmetric optical system can be 
implemented as a periodic optical system consisting 
of amplifying (gain) and absorbing (loss) media with 
balanced rates (±g) such that the system’s complex 
refractive index distribution corresponds to n(r) = 
n*(−r); that is, the real and imaginary parts of the 
refractive index are respectively given by even and 
odd functions with respect to a certain origin. Poten-
tial examples of such systems include coupled reso-
nators, coupled waveguides, modulating waveguides 
with vapor-deposited metal on part of a single wave-
guide, and fiber ring resonator systems. It has been 

Fig. 1.    Lorentz reciprocity for propagating modes. [S] = [Sij]: the scattering matrix, which relates the input EM waves to the 
output EM waves, in terms of their amplitudes and phases; i, j: channel indices. In the case of single-channel input 
power Pi,in at the i th channel, the output power Pj,out at the j th channel is Pj,out = |Sji|2 Pi,in.
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shown that these systems exhibit a number of novel 
phenomena originating from the exceptional point 
(PT phase transition point) as described below.

Examples are shown in Fig. 2(b) and (c) of bulk 
band structures*1 for the real and imaginary parts of 
the eigenfrequency detuning Δω of a PT-symmetric 
coupled-resonator system (taking the identical reso-
nant frequency of each resonator as the reference 
frequency, i.e., Δω = 0). Here, the system’s positive 
imaginary part Im(Δω) > 0 is regarded as a net gain, 
and Im(Δω) < 0 means a net loss of the eigenstates for 
each Bloch wavenumber, k, in the unit of π/(2LCC), 
where LCC is the spatial interval between the cavities. 
As shown in the lower part of Fig. 2(a), this system 
has two resonators as periodic units (unit cells). In the 
absence of gain and loss, the real bands are in the 
form of halved cosine curves (black lines in Fig. 2(b)), 
and the imaginary band is zero for all possible k 
(black lines overlapped in Fig. 2(c)). 

In contrast, in the band structure of the PT-symmet-
ric system with gain and loss (red lines in Fig. 2(b)), 

the upper and lower real bands merge at a certain 
point inside the first Brillouin zone to form a flat 
region. In the imaginary band structure (red lines, 
Fig. 2(c)), a new branch is generated from the wave-
number corresponding to the merge point in Fig. 2(b), 
and it extends to the edge of the band, k = π/(2LCC). 
This merge point is called an exceptional point*2 in 
complex function theory.

What happens at an exceptional point? In the two 
states before the real bands merge, light of equal 
intensity is distributed to both resonators in the unit 
cell, but in the two states after merging, the light is 

Fig. 2.   PT symmetry and exceptional points.
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*1 Band structure: For the eigenstates (eigenmodes) of EM fields 
that can exist in an infinite periodic system, the band structure in-
dicates the relationship between the Bloch wavenumber k, repre-
senting the wave number term in the phase envelope component 
and the corresponding eigenfrequency.

*2 Exceptional point: A point in a parameter space where its com-
plex function becomes indifferentiable. At the PT phase transition 
point, the eigenfrequency detuning and eigenstate become undif-
ferentiable, resulting in divergence of differential characteristics 
such as the group velocity.
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localized to either the cavity with the amplifying 
medium or that with the absorption medium. The 
imaginary band shows the net gains and losses of the 
state, and in the state before branching occurs, the 
light spreads evenly to both resonators, indicating 
that the overall gains and losses cancel each other out. 

In the state after branching, on the other hand, light 
is biased toward one resonator, so there is either a 
gain or a loss depending on which side the light 
becomes localized. In other words, a discontinuous 
qualitative change from an extensive stable state to an 
unstable localized state occurs at the exceptional 
point. In the parlance of physics, this is called a phase 
transition. Therefore, this point is also called the PT 
phase transition point. However, it is known that this 
phase transition and its accompanying phenomena 
can occur without the gains and losses being per-
fectly balanced.

Various phenomena occur before and after the 
phase transition [3]. These can be broadly catego-
rized as two types. The first type consists of direc-
tional responses resulting from the breaking of spatial 
inversion symmetry by gains and losses—for exam-
ple, unidirectional reflectionless resonances—and 
double refraction in a single direction. In fact, 
although it is known that Lorentz reciprocity cannot 
be destroyed in a standard linear PT-symmetric opti-
cal system, it has been proved that if the system is 
combined with nonlinearity in the laser oscillation, it 
can achieve the optical isolation at weak input inten-
sities [4, 5]. 

The second type consists of a phenomenon in 
which the net gain and loss caused by the phase tran-
sition are related. A typical example is single-mode 
lasing. In addition, lasing caused by an increase in 
loss of the partial system, accompanied by the phase 
transition, has also been observed (loss-induced las-
ing).

3.   Control of light group velocity by an 
exceptional point using a coupled photonic 

crystal laser array

To introduce these sorts of optical responses and 
mode control methods into nanophotonics, we pro-
posed a PT-symmetric coupled-resonator optical 
waveguide based on arrays of buried-heterostructure 
photonic crystal lasers, and we conducted a theoreti-
cal analysis of the system [6] (Fig. 3(a), (b)). NTT 
has developed a fabrication technique for a nanolaser 
that oscillates with the world’s smallest threshold 
current [7] and has been researching a large-scale Si 

(silicon) photonic crystal coupled-resonator optical 
waveguide [8]. By combining these technologies, we 
hope to achieve devices with new functions like those 
described above. In particular, we expect it will be 
necessary to increase the scale of the entire device 
(the number of cycles of gain and loss media) to con-
trol the device’s transmission and reflection well and 
to increase its achievable output power. However, 
there are few platforms that support both the scalabil-
ity and fine control of the amplification and absorp-
tion. We will therefore explore the possibility of per-
forming optical control with the merits of scale, 
based on the use of ultra-miniature lasers with gain 
and loss tuning by current injection or optical pump-
ing.

As an example, we focused on controlling the 
group velocity in this coupled-resonator optical 
waveguide. Group velocity is a measure of the propa-
gation speed of optical communication pulses. It is 
defined as the gradient of the real band (dΔω/dk) in 
Fig. 2(c) and diverges to infinity at the frequency cor-
responding to the exceptional point. In this study, we 
carried out an analysis using the tight-binding 
approximation*3 and the Schrödinger equation to 
show that despite the group velocity divergence at the 
exceptional point, the group velocity dispersion, 
which quantifies the pulse broadening, converges at a 
finite value there. This suggests that optical pulses 
may propagate without collapsing even under the 
extreme condition with a high group velocity.

Next, we conducted a numerical experiment where 
optical pulses were excited in a PT-symmetric cou-
pled-resonator optical waveguide and propagated 
through 100 resonators. Here, their central frequen-
cies were close to the exceptional point, that is, Δω = 
0. We used the same parameters assumed for the pho-
tonic crystal device discussed above. An example of 
pulse propagation in this experiment is shown in 
Fig. 3(c). The horizontal axis here is the time from 
when the center of the excitation pulse passes through 
the starting point until the signal is detected after 
passing through 100 resonators. This figure shows the 
results for a 10-ps pulse. The pulse peak propagates 
about ten times faster in a PT-symmetric system than 
in the system without any gain or loss introduced. 
However, to obtain such a response, we must selec-
tively excite a pulse with a single direction of travel 
(excitation wavenumber selectivity).

*3 Tight-binding approximation: An approximation whereby the lo-
calization of a wavefunction is strong towards each element of a 
coupled system (in this case, resonator), and coupling is effective 
only between adjacent elements.
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The pulse peak propagation speed increases as the 
temporal pulse duration increases. This is because a 
longer temporal width results in a narrower spectral 
width, which is less susceptible to slow group veloc-
ity components and higher order dispersion. The 
dependence of the peak velocity on the pulse central 
frequency is shown in Fig. 3(d) for several different 
pulse durations. The data suggest that a pulse with a 
temporal width of about 100 ps can in principle accel-
erate beyond the speed of light in the vacuum. Here, 
it is reckoned that this acceleration of pulses originat-
ing from increases and reductions in intensity does 
not conflict with the theory of relativity.

Finally, we calculated the band structure by con-
ducting an EM wave simulation assuming a realistic 
three-dimensional photonic crystal slab structure and 
embedding medium. The results are shown in Fig. 4. 
With suitable gain and loss, the bands exhibit an 
exceptional point where the principal eigenfrequency 

detuning component changes from real (black sym-
bols) to imaginary (red symbols) values (respectively 
represented in the figure as the wavelength and net 
gain or loss rates). In this case, the signed gain and 
loss components of the media are about ±300 cm−1, 
which are realistic for semiconductor optical devices. 
A closer look at the data indicates that the wave-
lengths of the two band curves (black lines) do not 
perfectly coincide near the exceptional point, and the 
maximum possible group velocity is about nine times 
as high as that of a system without any gain or loss 
introduced. This is thought to be due to radiation loss 
perpendicular to the slab surface, which implies that 
it is important to design devices with strong optical 
confinement.

4.   Future prospects

In this article, we described the background of the 

Fig. 3.   Photonic crystal PT-symmetric coupled-resonator optical waveguide.
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area of research focused on controlling light by using 
exceptional points based on PT-symmetric optics. In 
addition, we theoretically showed the drastic changes 
in the group velocity in the PT-symmetric photonic 
crystal laser arrays. We are currently carrying out an 
experimental demonstration of PT phase transition in 
a photonic crystal system with two nanolasers and 
studying advanced theoretical topics including con-
trol of photonic topology in coupled laser systems. 
We are also pursuing a way of implementing large-
scale PT-symmetric systems, which we hope to dem-
onstrate in the future.
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Fig. 4.   Band structure of photonic crystal PT-symmetric coupled-resonator optical waveguide.
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1.   Importance of ultralow latency operations

Improvements are still being achieved in the pro-
cessing capacity of processors by increasing the num-
ber of cores and enhancing parallelization. However, 
the frequency response has leveled off, as one can see 
in Fig. 1(a) [1]. In other words, basic throughput con-
tinues to improve through integration and paralleliza-
tion, but reductions in latency or delay have reached 
a plateau. Particularly in situations requiring spinal 
reflexive speed response, this calls for a significant 
technological breakthrough in the development of 
arithmetic processors capable of responding at super 
high speed. 

2.   Introduction of optical technology in 
arithmetic chips

Research and development in optical computing 
focused on achieving ultrahigh-speed calculations 
exploiting the immense broadband of light continued 
throughout the 1980s. The problem with this 
approach is that optical transistors are quite large and 
vastly inferior to complementary metal oxide semi-
conductor (CMOS) transistors in density, power con-
sumption, cascadability, and other factors. It is not 
surprising that research in this area fell off sharply in 

the 1990s. At the same time, however, optical com-
munications has proven vastly superior not only for 
long-haul communications but also in ongoing 
research to exploit the vast bandwidth of light in 
developing optical interconnects within and between 
chips. Today we see a marriage between light and 
electronics—optoelectronics—that exploits light for 
information transport and electronic circuitry for 
information processing. 

More recently we have seen remarkable progress in 
nanophotonic technology as new solutions have been 
found dealing with problematic issues that plagued 
optical and optoelectronic computing research in the 
past. In photonic crystal technology, for example, 
optical elements have been significantly downscaled 
to a mere 1/1000th the size they were a decade ago 
with corresponding decreases in power consumption, 
which brings optical elements into close competition 
with CMOS circuits. It is time that we reconsider the 
prevailing division between optical and electronic, 
with optical used primarily for transport and elec-
tronic for information processing. 

3.   Arithmetic chip delay factor

The frequency response rate-limiting issue men-
tioned earlier can be attributed to resistance (R) and 
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capacitance (C) in the wiring path of CMOS circuits. 
The gate switching time of CMOS transistors has 
been sharply reduced by advances in semiconductor 
micro-fabrication technology, but the total delay of 
CMOS gates levels off at around 10 ps due to R and 
C in the transistor interconnects, as shown in Fig. 1(b) 
[2]. Moreover, R and C in the wiring only increases 
as transistors become more compactly integrated and 
wiring is stretched thinner and longer, which further 
increases the latency of actual circuits. 

Electronic circuits also inevitably exhibit a certain 
amount of latency due to their structure. One of the 
most widely used circuit configurations is the AND/
OR logic circuit shown in Fig. 2(a). The output signal 
from one logic gate drives the following logic gate, so 
obviously, the latter gate cannot do anything until the 

output signal from the previous gate arrives. The wait 
time involved in these gate operations is proportional 
to the number of gates, which makes for substantial 
arithmetic delay. 

4.   Arithmetic chip with optical and electronic 
elements integrated at transistor level

One solution to wiring-induced latency is on-chip 
optical communications. This is essentially a pho-
tonic technology for conveying information between 
cores, but here we extend this approach to the transis-
tor level as a solution to the architecture-induced 
latency problem. In trying to come up with the ideal 
circuit configuration, we can find a valuable clue in 
the field of electronics. A schematic pyramid-shaped 
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tree circuit based on a binary decision diagram 
(BDD) [3] is shown in Fig. 2(b). We assume a con-
figuration in which “1” is output from the signal 
source located in the leaf part of the tree at the base of 
the pyramid, and Boolean operations are performed 
by selecting either signal source “1” or no signal 
source “0” depending on the combination of external 
inputs (x1, x2…). Various methods for simplifying 
BDDs have been proposed, and if these methods can 
be applied to the BDD-based circuit, the number of 
switches could be greatly reduced. 

This type of circuit configuration is called a pass 
transistor logic circuit. The signal passing through 
the circuit is called a carry, and an operation is per-
formed by steering the carry flow with 2 × 1 switches. 

Here, we refer to the optical version of this struc-
ture as an optical pass gate logic circuit, and we 
replace the electronic switches with 2 × 1 and 2 × 2 
optical gates. In this architecture, light is used as the 
carry signal. 

The optical pass gate logic circuit has a number of 
significant advantages:

•  All switches making up the critical path operate 
collectively—We saw earlier that the gate opera-
tion wait time is proportional to the number of 
gates in an AND/OR logic circuit since subse-
quent gates cannot act until they receive the carry 
signal from the previous gate. Since optical pass 
gate logic circuits operate all gates collectively, 
though, they support critical paths requiring only 
a few picoseconds at most. 

•  Light speed operations—Since the optical carry 
does not sense R or C in the optical path, circuits 
are not slowed by R and C limitations in paths. 
Although optical gate operations do incur some 
RC delay, the operation time is affected very lit-
tle since all gates operate collectively. 

•  Logic operation without optical transistor—
Operations that require an optical transistor that 

controls the optical carry by another light signal 
are very difficult to implement since with today’s 
technology they consume enormous amounts of 
energy, generate practically the same amount of 
latency as CMOS gates, and have a host of other 
issues. However, our optical pass gate logic cir-
cuit performs logic operations without an optical 
transistor simply by passing the optical carry 
through electrically controlled optical gates. 

One might assume that this configuration could be 
just as easily implemented with electronic circuitry, 
but the carry signal passes right through the series 
resistance of multiple transistors, which would drive 
up R and make it virtually impossible to fabricate a 
high-speed response circuit. 

In contrast, our optical carry scheme is independent 
of R and C, so the carry propagation time is dramati-
cally reduced by exploiting nanophotonic technolo-
gy. For example, the propagation time for an optical 
gate length of 100 μm is on the order of ~1 ps. This is 
just a fraction of the latency generated by a CMOS 
gate. 

5.   Ultralow-latency optical parallel adder 

Let us consider a specific circuit configuration as an 
example of a digital adder. A typical electronic circuit 
configuration is illustrated in Fig. 3(a). The carry 
signal (ci) operates the gate in the i + 1th logic block, 
and the result generates the next carry signal (ci + 1). 
One will note that a certain amount of wait time is 
generated for the gate operations in the various logic 
blocks by this step. The new circuit configuration we 
propose is shown in Fig. 3(b). In this scheme, all 
gates in the logic blocks are operated collectively, and 
this fundamentally changes the structure of carry sig-
nal propagation. 

Let us first configure a BDD-based full adder (FA) 
as the i + 1th logic block. 

Fig. 3.   Schematic diagrams of digital adder circuits.
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An FA takes two 1-bit inputs (x and y) representing 
the two significant bits to be added. In the circuit 
shown in Fig. 4(a), a Mach-Zehnder interferometer 
(MZI) is incorporated as a 2 × 1 switch. The switch is 
configured to select the upper (lower) input port when 
the input signal (xi, yi, ci) is “1” (“0”). The circuit 
selects the light source located in the leaf part of the 
tree structure according to the truth table in Table 1. 
Note that xi, yi, and ci are all input at the same time, 
and consequently, all the MZIs are driven at the same 
time. This allows the carry operation [ci + 1 = CARRY 
(xi, yi, ci)] and ith digit addition [si = SUM (xi, yi, ci)] 
to be completed just by propagation of light from the 
light source. 

Note, however, that this circuit only adds two 1-bit 
inputs, x + y. In order to add multi-bit inputs, the opti-
cal carry signal (ci + 1) output from the ith FA circuit 
must be capable of operating the i + 1th FA circuit 
gate. For example, this could be achieved using an 
optoelectronic (OE) converter. Although there is a 
way of converting ci + 1 to electronic signals, this 
involves latency, which again raises the issue of 
delayed operation time. 

This led us to implement the block diagram shown 
in Fig. 4(b) [4]. This circuit operates according to the 
truth table in Table 2, which redefines the truth table 
in Table 1. Instead of the light source in Fig. 4(a), here 
we employ optical ci and xi signals. Light ci uses out-
put from the ith FA circuit, while the optical xi signal 
is produced by combining light from the light source 
and from the MZI in the upper left. As is apparent 
from Table 2, the CARRY and SUM operations 
respectively select ci (xi) and –ci (ci) when exclusive or 

(XOR) (xi, yi) = 1 (0). This operation drives the three 
MZIs shown on the right side of Fig. 4(b). For exam-
ple, the SUM operation is executed when ci (–ci) is 
input to the port in the upper left (lower left) of the 
MZI in the middle of the right side, and by selecting 
the port in the lower left (upper left) when XOR  

Fig. 4.   Schematic diagram of optical FA.
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(xi, yi)1 = (0). In this architecture, only one MZI is in 
the path where ci is input and ci + 1 is output. This is 
the critical path that limits addition operations. 

The simulation results for 4-bit addition are pre-
sented in Fig. 5. The leading edge of each digit’s 
signal reveals the response speed of XOR operations. 
Note that arithmetic latency of XOR does not accu-
mulate as the number of digits increases. However, τ 
in the figure reveals a cumulative arithmetic delay of 
four digits, which generates a delay of about 1 ps per 
digit using a 100-μm-long MZI. The bottom line is 
that this ultralow latency figure is far smaller than the 
22-ps-per-digit latency of current state-of-the-art cir-
cuits implemented in CMOS. 

6.   Future prospects

This article introduced ultralow-latency optical 
pass gate logic circuits using a digital adder as an 

example. We plan to build on this new architecture as 
we pursue operational trials on ultrasmall-feature 
devices that we are now developing as a concurrent 
project. 
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Fig. 5.   Simulation results for 4-bit digital adder.
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1.   Carrier network issues

Existing business and social infrastructures will be 
shifted to mechanisms that assume digitization. Addi-
tionally, with the migration to a 5G (fifth-generation) 
mobile network and the further penetration of cloud 
services, we can expect the service provision format 
to be increasingly diversified and an even greater 
variety of services to be launched, for example, real-
time processing for self-driving systems or the utili-
zation of data from various types of sensors. Many of 
these services will be provided in a cloud environ-
ment, so we can envision the need not only for lever-
aging of cloud features to provide services rapidly but 
also the need for continuous adding and modification 
of services. Regarding networks for using services 
that are provided in a cloud environment, we can 
foresee that network connection points, quality level, 
and other factors will have to be changed in an on-
demand manner depending on the service.

However, network services provided to date have 
only had a function for connecting the user and ser-
vice provider, and the inability of the network and the 
service provision infrastructure on the cloud to suffi-
ciently work together has hindered the rapid provi-
sion of services. Additionally, while the quality and 
reliability of carrier networks themselves have tradi-
tionally been high, the ability to control the network 

from outside the carrier has proved difficult due to 
various problems including a low degree of freedom, 
a relatively long time for providing a service or 
changing settings, and the difficulty of making on-
demand changes. 

NTT Network Technology Laboratories has been 
studying cloud native software-defined anything 
(SDx)* control technology to resolve the above 
issues. This technology will enable service providers 
to use diverse functions provided by the network 
from the outside and to provide more attractive net-
work services than ever. It will also simplify and 
accelerate the provision of services by enabling the 
cloud environment and applications for providing 
services to be collectively and automatically con-
trolled. 

2.   Cloud native SDx control technology

The cloud native SDx control technology enables 
service providers to subjectively and uniformly con-
trol a network that connects end users to services and 
the cloud environment that is the infrastructure for 
providing services and service applications (Fig. 1). 

Regular Articles

* SDx: Generic term for technology that enables software-based 
control of information technology infrastructure resources (serv-
ers, storage, networks, etc.).

Cloud Native SDx Control 
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As various services are introduced in the cloud environment, service provision can be simplified and 

accelerated through end-to-end automatic control of network services and the cloud environment that 
includes applications for providing services. This article provides an overview of cloud native SDx 
(software-defined anything) control technology and describes a technical verification of automatic 
control technology.
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The equipment used in providing network services 
has generally consisted of dedicated devices, but with 
the progress being made in softwarization of hard-
ware functions, it is becoming possible to replace 
those devices with a combination of general-purpose 
hardware and software. This makes it easier to con-
trol the network itself with software. With this change 
in the environment, and in view of the increasing 
number of services provided from a cloud, it will be 
impossible to provide more flexible and prompt ser-
vices unless a means of integrating control from the 
network to the application is devised. Cloud native 
SDx control technology is targeted for all sorts of 
operators that provide services from a cloud environ-
ment, and it is aimed at providing network services 
that link a common infrastructure with the cloud 
while automating the immediate provision and main-
tenance of services.

3.   Technical elements for SDx control

Achieving integrated control of a variety of targeted 
services requires (1) a mechanism for automatically 
controlling the resources (networks, resources on the 
cloud, etc.) needed for service provision and (2) a 
method for appropriately managing the information 
describing the resources targeted for control.

First, with regard to (1), various technologies 
already exist for implementing a mechanism for auto-
matic control in a cloud environment. Service provid-
ers are already using such technologies, so we can use 
such cloud-based technologies as a basis for includ-
ing the network as a target of control. Specifically, we 
are combining technologies such as network func-
tions virtualization (NFV) and software-defined net-
working (SDN) and studying a mechanism for han-
dling the network and cloud environment as well as 

Fig. 1.   Cloud native SDx control.
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the applications corresponding to different types of 
services through a series of operations. However, 
various resources are necessary to provide services, 
including physical resources (computer, network 
equipment, etc.) and virtual resources (virtual com-
puters, SDN functions, etc.), and some form of con-
trol is needed to link and coordinate them. The con-
trolled objects differ for each service, so creating an 
automatic-control mechanism for each service would 
require a great deal of labor.  

Consequently, to provide flexible support for 
diverse services by modeling controlled objects and 
handling them in a generalized manner, a manage-
ment method that can uniformly handle resource 
information as described by requirement (2) above is 
needed (Fig. 2). To build a model, the first step would 
be to clarify the type of service targeted for control as 
a network descriptor, and to define what elements 
(network nodes, computer resources in the cloud 
environment, etc.) make up the service and the state 
of each element as a class descriptor. The next step 
would be to define a graph template that shows how 
each of those elements are connected, and the order 

they should be placed in is defined as a procedure 
descriptor. Because data characteristics differ for 
each type of information defined, we are also investi-
gating the use of graph databases and key-value store 
schemes as methods for appropriately managing that 
information in forms that are easy to handle from the 
outside (Fig. 3).

4.   Technical verification

We conducted a technical verification to assess the 
feasibility of achieving automatic control by combin-
ing a variety of technologies used on the cloud. For 
this verification, we created a scenario assuming spe-
cific service-provision scenes. The scenario was 
based on a service provider configuring a service that 
provides an application for controlling a robot 
installed in the user’s home and that remotely pro-
vides robot control functions. 

We assumed the following three processes would 
be carried out in the provision of this service: (1) 
infrastructure construction, (2) service configuration 
and provision based on user request, and (3) detection 

Fig. 2.   Modeling of controlled objects.
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and handling of any unauthorized access occurring 
during the service. For each of these, we constructed 
an environment using actual equipment to assess 
operation.
(1) Infrastructure construction

In constructing an infrastructure for providing this 
service, we succeeded in automatically deploying on 
the cloud infrastructure gateways for making connec-
tions, an authentication function, and an application 
for robot control.
(2) Service configuration and provision based on 
user request

We made it possible to automatically launch the 
application for robot control, set user information to 
the authentication function, and enable the user to use 
the application.
(3) Detection and handling of unauthorized access

We made it possible when detecting anomaly traffic 
to automatically launch a function for checking the 
content of that traffic and to determine whether unau-
thorized access has occurred.

If unauthorized access is detected, we made it pos-
sible to use that detection as a trigger for automati-
cally launching a function for removing the unauthor-
ized access and recovering the system to a normal 
state. The configuration for technical verification of 
unauthorized access detection is shown in Fig. 4. In 
the past, infrastructure construction and service pro-
vision based on demand would require the service 
provider to establish various settings and install the 

application manually. Furthermore, the only way for 
the person in charge of system monitoring to discover 
an anomaly would be to notice indications that an 
unauthorized access was taking place and then collect 
and analyze various types of information. Respond-
ing to such an anomaly would also be centered 
around manual operations. Such tasks not only 
require a lot of work but also increase the possibility 
of human error in operations.

In this technical verification, we confirmed that 
many tasks from network settings to application 
installation and anomaly detection and response 
could be automated by combining various existing 
mechanisms (most implemented as open source soft-
ware). Going forward, we aim to achieve efficient 
automation of diverse types of service provision by 
incorporating the modeling and configuration man-
agement methods that we are currently studying 
based on those mechanisms.  

5.   Future outlook

We plan to establish the technologies behind the 
modeling and configuration management methods 
now being studied and incorporate them in an auto-
matic control mechanism. In this way, we aim to 
establish a control infrastructure that can uniformly 
manage and automatically control all of the resources 
needed for providing a service.

Fig. 3.   Management of configuration information.
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Fig. 4.   Technical verification configuration (unauthorized access detection).
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1.   Requirements of future access systems

Standardization of the 10-Gbit/s-capable passive 
optical network (PON) was carried out in order to 
meet the large demand for high capacity transmission 
in future optical access systems [1, 2]. In addition, 
40-Gbit/s-capable PON, known as Next-Generation 
Passive Optical Network Stage 2 (NG-PON2), has 
also been standardized and can support up to 80 
Gbit/s [3]. With conventional optical access systems, 
focus was placed on enhancing transmission capacity 
to accommodate the rapidly growing traffic. Howev-
er, NG-PON2 was specified in order to accommodate 
various services (e.g., enterprise and mobile services) 
in addition to the fiber-to-the-home (FTTH) service. 
In light of this background, future access networks 
are expected to flexibly address further diverse 
emerging services such as those related to the Internet 
of Things and edge computing. Future access systems 
should therefore be flexibly and quickly provided at a 
low cost to meet various service requirements (band-
width, latency, reliability, etc.), which might be dif-
ferent for each service. 

The use of virtualization technology rather than 
conventional purpose-built access equipment to 
achieve such a future access system is attracting a lot 
of attention from the broadband access industry. Such 
technology would enable access functions by using 

commodity hardware (servers and switches) and soft-
ware components [4, 5]. To establish a virtualized 
access system, it is important that consolidated access 
functions inside the equipment are disaggregated to 
each functional module based on the standardized 
architecture and interfaces in order to achieve practi-
cal future deployment and assured interoperability. 

2.   Broadband Forum (BBF)

BBF is a nonprofit industry consortium established 
in the United States in 1994. It was formerly known 
as the ADSL (Asymmetric Digital Subscriber Line) 
Forum. In 2008, the organization widened its scope to 
include optical access networks and changed its name 
to Broadband Forum accordingly [6]. Since then, 
BBF has contributed to broadband access industries 
and earned a high reputation for its efforts, especially 
in developing control/management specifications and 
interoperability test specifications of access systems, 
which have been published in more than 200 Techni-
cal Reports (TRs). 

BBF is composed of more than 150 companies/
organizations, which include telecom carriers, multi-
ple service operators, system vendors, ASIC (applica-
tion specific integrated circuit) vendors, interopera-
bility test labs, and others from around the world. The 
organization chart of BBF is shown in Fig. 1. The 
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Service Provider Action Council discusses various 
technical topics and directions that are driving BBF. 
Each Work Area (WA) in the Technical Committee 
discusses corresponding technical specifications 
based on the topics and provides TRs as their deliver-
ables, which are disclosed on the BBF homepage [7]. 
As shown in the figure, three WAs focusing on Com-
mon YANG (Yet Another Next Generation), SDN and 
NFV (Software Defined Networking and Network 
Functions Virtualization), and Fiber Access Net-
works (FAN) are working intensively on the develop-
ment of specifications related to virtualized access 
systems. 

3.   Standardization trends of virtualized access 
systems by BBF

The deliverables and documents being developed 
by BBF that are related to virtualized access systems 
are summarized in Table 1. In the leftmost column 
(document number) in Table 1, WT stands for Work-
ing Text, which is a draft for a future TR that is dis-
closed only to BBF members. As indicated in the 
table, BBF is actively developing various documents 
such as those concerning NETCONF (Network Con-
figuration Protocol), YANG models (modules), and 
Cloud CO (Central Office) specifications. These are 
explained in more detail in the following subsections.

3.1    Standardization of NETCONF/YANG model 
(module)

NETCONF is a configuration protocol of network 
equipment and was developed to remotely conduct 
configuration and management functions in distrib-
uted equipment from a centralized SDN controller. 
The YANG model is a common data-modeling lan-
guage that abstracts a structure and the configuration 
values of each piece of network equipment. Using 
NETCONF and a YANG model makes it possible to 
achieve interoperability between network equipment 
and a controller from various system vendors. In July 
2016, BBF launched the first specifications of a 
YANG module for a fiber-to-the-distribution point 
(FTTdp)*1 system as TR-355 (Table 1). Since then, 
BBF has been developing several YANG models 
(Note: each model consists of several modules) for 
PON systems, optical network units, access nodes, 
and home networks, as indicated in Table 1.  

3.2   Cloud CO
Cloud CO is a project that was proposed and agreed 

to at the BBF meeting in July 2016. The objective of 

Fig. 1.   Organization chart of BBF.

Source: https://www.broadband-forum.org/about-the-broadband-forum/about-the-forum/bbf-working-structure
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*1 FTTdp: A way to provide a broadband Internet service to cus-
tomer premises with the hybrid use of optical fiber and metal 
cable. The fiber is installed between a CO and a distribution point 
close to the customer premises, while the cable is used to connect 
the distribution point and customer premises. 
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the project is to develop specifications for next-gen-
eration COs (telecom carrier central offices that con-
tain network equipment) that use SDN/NFV and 
cloud technologies. Similarly to Central Office Re-
architected as a Datacenter (CORD)*2 developed at 
the Open Networking Foundation (ONF), Cloud CO 
will lead to the re-architecting of COs through the use 
of commodity hardware, softwarized CO functions, 
and controllers. Furthermore, inter-CO configuration 
and management can be achieved by using an orches-
trator located in a cloud layer. This innovative archi-
tecture is expected to lead not only to a reduction in 
capital expenditures and operating expenses (CAPEX/
OPEX) but also to flexibly and agilely provide 
emerging services. 

A reference architecture of Cloud CO is shown in 
Fig. 2. This architecture was created based on the 
authors’ understanding of some figures and corre-
sponding content of BBF TR-384 (Table 1). In Fig. 2, 
the CO and the network between the CO and the cus-
tomer’s premises are called the Cloud CO Macro-
Node. They are composed of network input/output 
(NW I/O), (network functions virtualization infra-
structure (NFVI), access nodes (e.g., optical line ter-
minal (OLT) hardware), CPE (customer premises 
equipment), and a hardware abstraction layer (HAL). 

The NW I/O is an interface between Cloud CO 
Macro-Node and a metro network. Similarly to 
CORD, the NFVI consists of white box switch (SW) 
fabric (leaf/spine SWs in Fig. 2) and compute nodes 
based on commodity servers where virtual network 
functions (VNFs) are implemented. Using the NFVI 
approach makes it possible to simplify network 
equipment by operating some network functions as 
VNFs on commodity servers. HAL is an abstraction 
layer that enables vendor-agnostic interoperability 
between SDN Management & Control (M&C) and 
the access node. SDN M&C controls flow and 
FCAPS (fault, configuration, accounting, perfor-
mance, and security) functions located in physical 
network functions (PNFs) in the access node and in 
VNFs in the NFVI. Furthermore, it controls the SW 
fabric in NFVI. 

In Fig. 2, SDN M&C is depicted above Cloud CO 
Macro-Node for the sake of simplicity, although 
TR-384 does not specify its location. In the upper 
layer, the Cloud CO architecture has MANO  

Table 1.   Examples of deliverables and documents under development at BBF.

Doc. number Document title WA 

TR-355 YANG Modules for FTTdp Management 

Common YANG WT-383 Common YANG modules 

WT-374 YANG Models for Management of G.hn Systems in FTTdp Architecture 

WT-358 Support for SDN in Access Network Nodes 

SDN and NFV 

WT-368 YANG Models for ANs in SDN 

TR-384 Cloud Central Office Reference Architectural Framework 

WT-411 Definition of interfaces between Cloud CO Functional Modules 

WT-412 Test Cases for Cloud CO Applications 

WT-413 Migration to SDN-Enabled Management and Control

WT-385 YANG model for management of ITU-T PON 

FAN 

WT-394 YANG model for management of ONU 

WT-395 NETCONF Management of PON ONUs Architecture Specification

WT-402 Functional model for PON abstraction interface 

WT-403 PON abstraction interface specifications 

WT-414 PON NETCONF and YANG Data Model Interoperability Test Plan 

Sources: https://www.broadband-forum.org/standards-and-software/technical-specifications/technical-reports
https://www.broadband-forum.org/standards-and-software/scope/technical-work-in-progress

ANs: Access Nodes
Cloud CO: Cloud Central Office
FTTdp: fiber-to-the-distribution point
ITU-T: International Telecommunication Union - Telecommunication Standardization Sector

NETCONF: Network Configuration Protocol
ONU: optical network unit
WT: Working Text

*2 CORD: One of the use cases of the Open Network Operating 
System (ONOS), which is an operating system designed for car-
riers. CO functions are disaggregated and re-architected with an 
ONOS controller, commodity hardware, and open source soft-
ware [4].
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(management and orchestration), which manages 
NFVIs, and Cloud CO Domain Orchestrator, which 
achieves inter-CO orchestration. As indicated in 
Table 1, the Cloud CO project will release several 
deliverables related to TR-384 as an umbrella docu-
ment. These deliverables include interface specifica-
tions of functional modules (WT-411), test cases for 
Cloud CO applications (WT-412), and migration to 
SDN-enabled management and control (WT-413). In 
addition, the project is drawing considerable atten-
tion from the broadband access industry and will 
cover reference software/hardware implementation 
documents. 

4.   NTT’s activities in BBF

In February 2016, the NTT laboratories introduced 
the Flexible Access System Architecture (FASA) 
concept for technology development on future access 
networks in order to enable a more diverse range of 
services provided quickly and at low cost [8]. Rather 
than using conventional purpose-built access equip-
ment, FASA will modularize the various individual 
functions of access equipment as much as possible to 
enable the free combination of these individual soft-
ware components on commodity hardware. This will 
allow for software-based functions to be built into the 
commodity hardware flexibly and quickly as required 

for services, while still maintaining the same service 
quality. To achieve FASA, it is necessary to introduce 
an application programming interface (API) between 
each software component and the commodity hard-
ware. Since APIs should be commonly usable by 
various players (system vendors, carriers, etc.), the 
NTT laboratories released an API set in a FASA 
White Paper [9]. 

In addition to flexible control & management func-
tions for future access systems as in CORD and 
Cloud CO, FASA is intended to achieve the modular-
ization (disaggregation) of time-critical functions in 
order to achieve updates and/or replacement of those 
functions. In October 2016, at the meeting of FAN 
WA of BBF, members of the NTT laboratories pro-
posed a new project called “PON abstraction inter-
face for time-critical applications (TC Apps)” and 
agreed to start it with support from several carriers 
and vendors. The disaggregation policy of time-criti-
cal PON functions discussed in the project is shown 
in Fig. 3. As shown in the figure, TC Apps will disag-
gregate time-critical functions (e.g., dynamic band-
width allocation (DBA)), which remain as PNFs in 
Cloud CO (TR-384). According to the policy depict-
ed in Fig. 3, the time-critical function will be disag-
gregated to a differentiation part, which leads to 
software replacement based on service requirements, 
and a common behavior part as an engine. Furthermore, 

Fig. 2.   Reference architecture of Cloud CO.
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APIs between the two parts are under discussion to be 
specified as standards. The relevant documents of TC 
Apps are WT-402 and WT-403 in Table 1. 

Using the modularization technology even in time-
critical functions that require wire-rate processing 
will make it possible to achieve a flexible and agile 
adaptation to emerging services on access networks 
by replacing software components according to ser-
vice requirements. An attractive use case of TC Apps 
is mobile fronthaul (MFH) for fifth-generation (5G) 
or beyond 5G mobile service over a time-division 
multiplexing (TDM)-PON system. In future mobile 
systems, dense small cells could be accommodated 
by the use of the PON architecture, which has an 
advantage in terms of low CAPEX of physical infra-
structure [10]. In this case, by replacing the DBA 
software from FTTH-DBA to low-latency DBA in 

the OLT, TDM-PON-based MFH can be achieved 
without rebuilding the OLT from scratch. This would 
result in flexible and agile adaptation of an optical 
access system to mobile services by replacing soft-
warized time-critical PON functions. At the BBF 
meeting in Osaka held in June 2018 as shown in 
Fig. 4, members of the NTT laboratories successfully 
demonstrated their prototype mobile PON system, 
which implements DBA-API specifications being 
developed in WT-402 and 403 [11]. 

5.   Future prospects

This article reviewed the standardization trends of 
virtualized access systems by BBF. As a result of the 
active technical discussions that have taken place, 
BBF will publish several specifications as TRs in the 

Fig. 3.   Disaggregation policy for time-critical PON functions.
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near future. In line with the progress of virtualization 
technology, open source software (OSS) is also being 
intensively developed for VNFs that are necessary in 
virtualized access systems. The NTT laboratories will 
continue to contribute to international standardiza-
tion efforts by leading our project at BBF, and to OSS 
development at ONF as well. 
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1.   Introduction

NTT has developed low-latency optical access 
technology that helps to reduce the number of optical 
fibers needed to accommodate base stations, espe-
cially during the period when the fifth and subsequent 
generation mobile systems are being introduced. 
NTT has also conducted a feasibility trial in which 
the optical access system operated in coordination 
with a mobile system.

This technology reduces data transmission latency, 
which is an issue when applying optical access sys-
tems to a mobile system. It is achieved by making 
optical line terminals (OLTs) and base station aggre-
gation units that are deployed in telecommunications 
carriers’ central offices operate in coordination with 
the signal control.

Applying optical access systems with this technol-
ogy to a mobile system makes it possible to efficient-
ly use optical fibers between a central office and the 
base stations. This reduces both the number of optical 
fibers required and the ports of the base station aggre-
gation unit, enabling efficient operation of base sta-
tions. Detailed discussions on this technology have 
been initiated by ITU-T (International Telecommuni-
cation Union - Telecommunication Standardization 
Sector), a standardization organization.

NTT is committed to ongoing research and devel-
opment (R&D) to assist mobile operators with effi-
cient construction of their networks.

2.   Background

The fifth generation (5G) mobile system is being 
developed to achieve a high-speed, high-capacity, 
and low-latency mobile service. In the existing 
mobile system, optical fibers are used to connect the 
base station aggregation unit installed in a central 
office to base stations installed on towers or on top of 
buildings.

To achieve high-speed, high-capacity wireless 
communication, the 5G mobile system uses new 
radio frequency bands. This will require installation 
of more base stations than before, resulting in an 
increase in the number of optical fibers used to con-
nect the base stations to the base station aggregation 
unit and in the number of ports for the base station 
aggregation unit. These increases are expected to 
complicate network operations, including fault 
recovery and maintenance. Therefore, it is essential 
that base stations can be connected and operated effi-
ciently, especially during the period when the 5G 
system is expanding, which will require the installa-
tion of numerous base stations.

3.   Research results

An optical access system is employed to connect 
optical network units (ONUs), which set up connec-
tions to user terminals, to OLTs in a central office in 
an FTTH (fiber-to-the-home) service. NTT has devel-
oped low-latency optical access technology to enable 

Development and Trial of Low-
latency Optical Access Technology 
that Operates in Coordination with a 
5G Mobile System—Achieving 
Efficient Accommodation and 
Operation of Base Stations
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use of the optical access system in a mobile system.
The conventional optical access system cannot sat-

isfy the low latency requirement demanded by the 
mobile system. The new optical access technology 
reduces this latency by making OLTs in the optical 
access system operate in coordination with the signal 
control by the base station aggregation unit.

In cases where the conventional optical access sys-
tem is used, when an ONU receives data from a user 
terminal, it notifies the OLT of the volume of data that 
it will transmit. It sends data to the OLT only after it 
has received permission to transmit data. This causes 
high latency before the ONU transmits data, which is 
why the conventional access system cannot satisfy 
the mobile system’s requirement for low latency.

In contrast, when the new low-latency optical 
access technology is applied, the base station aggre-
gation unit provides advance notification to the OLT 
of the volume of data that will be sent by the user 
terminal. This is possible because the base station 
aggregation unit has been notified by the user termi-
nal in advance of the volume of data that will be sent 

by the user terminal. Making the optical access sys-
tem operate in coordination with the mobile system in 
this way makes it possible to omit the round trip pro-
cedures used in the conventional optical access sys-
tem for notification of the amount of transmission 
data and for transmission permission, thereby achiev-
ing low-latency optical access (Fig. 1).

4.   Future plan

NTT will continue pursuing R&D to assist mobile 
operators with efficient construction of their net-
works. It will also promote standardization by con-
ducting global discussions with telecommunications 
carriers and vendors and studies on coordinated 
operation of the mobile system and the optical access 
system.

For Inquiries
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Fig. 1.   Low-latency optical access technology.
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1.   Introduction

NTT has developed a real-time 4K*1 high frame 
rate (HFR) High Efficiency Video Coding (HEVC)*2 
codec that enables live transmission of HFR video. 
HFR enhances video smoothness and sharpness by 
doubling the frame rate*3 of the standard video frame 
rate (SFR) from 50/60 p to 100/120 p. HFR video is 
especially effective for fast-moving video content 
such as sports.

By developing this codec, NTT will contribute to 
enhancing the quality of broadcasts and public view-
ing of sporting events. NTT will also develop oppor-
tunities to use HFR transmission in virtual reality and 
surveillance applications. 

2.   Background

Ultra-high-definition (UHD) services have been 
launched recently by many satellite operators and 
OTT (over-the-top) platforms throughout the world. 
In March 2015, NTT announced a real-time 4K/60 p 
HEVC video encoder LSI (large-scale integrated cir-
cuit) called NARA (Next-generation Encoder Archi-
tecture for Real-time HEVC Applications) [1], which 
has contributed to the rapid acceptance of UHD ser-
vices.

Live sports programs are the main drivers of UHD 
services, so HFR video technology, which is espe-
cially beneficial for sports content, has attracted 
strong interest from UHD service providers. NTT’s 

real-time 4K HFR HEVC codec enables UHD ser-
vice operators to conduct live broadcasts of HFR 
sports content.

3.   Technical overview

Both the 4K HFR HEVC encoder appliance and the 
4K HFR HEVC decoder appliance, key components 
of the real-time 4K HFR HEVC codec, are a compact 
1U (1 rack unit: 44.45 mm height) size (Fig. 1). The 
4K HFR HEVC encoder appliance provides back-
ward compatibility by supporting temporal scalable 
coding*4, meaning the output stream can be decoded 
by a conventional SFR decoder to yield 4K SFR 
video.

NTT Develops World’s First Real-
time 4K High Frame Rate HEVC 
Codec—Enabling Live Transmission 
of High Frame Rate Video, Resulting 
in Smoother and Sharper Video 
Quality
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*1 4K video: A video format that has approximately 4000 horizontal 
lines and 2000 vertical lines. There are some variations. The tele-
vision industry uses 3840 × 2160 (UHD-4K) resolution, while 
the cinema industry uses 4096 × 2160 (DCI-4K) as the standard 
format.

*2 HEVC: The latest video compression standard developed through 
the joint collaboration of international standardization bodies, 
ITU-T (International Telecommunication Union - Telecommuni-
cation Standardization Sector) and the International Organization 
for Standardization/International Electrotechnical Commission 
(ISO/IEC).

*3 Frame rate: The number of frames per second. 60 p indicates that 
the video comprises 60 frames per second in progressive scan-
ning.

*4 Temporal scalable coding: An output stream of temporal scalable 
coding contains one or more subset streams. Different frame rate 
video can be decoded from one video stream by the combined 
use of subset streams in decoding.
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Moreover, our codec supports the MPEG Media 
Transport (MMT) protocol*5 which enables hierar-
chical transmission. Two independent transmission 
routes can be used to transfer the base-layer data, 
which is used for decoding 4K SFR video, and the 
enhancement-layer data, which is used together with 
base-layer data for decoding 4K HFR video. 

4.   Technical features

(1) Multichip encoding
The encoder uses two NARA chips in parallel to 

achieve the high-speed processing demanded by HFR 
encoding, while maintaining visual quality by carry-
ing out mutual data transfers between the chips.
(2) Hierarchical transmission by MMT protocol

The MMT protocol enables the base-layer data and 

enhancement-layer data to be transmitted over differ-
ent IP (Internet protocol) streams. Using two differ-
ent transmission routes creates a timing offset in the 
arrival of the data streams. MMT can reconfigure the 
order of data by using timestamps based on UTC 
(coordinated universal time).

Reference

[1] Y. Omori, T. Onishi, H. Iwasaki, and A. Shimizu, “A 120 fps High 
Frame Rate Real-time Video Encoder,” NTT Technical Review, Vol. 
15, No. 12, 2017.
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Fig. 1.   Real-time 4K HFR HEVC codec.

4K HFR HEVC encoder 4K HFR HEVC decoder

*5 MMT protocol: MMT (MPEG Media Transport) is the digital 
container standard developed by MPEG (Moving Picture Experts 
Group), a working group of international standardization organi-
zation ISO/IEC. MMT is designed to distribute media via various 
transmission routes such as broadcasting and IP networks.
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15 × 200 Gbit/s 16-QAM SDM Transmission over an Inte-
grated 7-core Cladding-pumped Repeatered Multicore 
Link in a Recirculating Loop

C. Castro, S. Jain, E. De Man, Y. Jung, J. Hayes, S. Calabrò, K. 
Pulverer, M. Bohn, S. Alam, D. J. Richardson, K. Takenaga, T. 
Mizuno, Y. Miyamoto, T. Morioka, and W. Rosenkranz

IEEE Journal of Lightwave Technology, Vol. 36, No. 2, pp. 349–
354, January 2018.

We investigate a realistic integrated multicore system consisting of 
directly spliced components: homogeneous trench-assisted seven-
core fiber with a length of 60 km, cladding-pumped seven-core 
amplifiers, integrated seven-core isolators, and fiberized fan-in/fan-
out couplers. We analyze the performance of an in-line repeatered 

multicore transmission system in a recirculating loop by transmitting 
a 200 Gbit/s 16-QAM test channel and 14×100 Gbit/s QPSK neigh-
boring channels between the wavelengths of 1558.58 and 1564.27 
nm in a 50-GHz grid. For every position of the test channel within the 
considered band we demonstrate transmission distances over 720 km.

  

Ultrahigh-spectral-efficiency WDM/SDM Transmission 
Using PDM-1024-QAM Probabilistic Shaping with Adap-
tive Rate

H. Hu, M. P. Yankov, F. Da Ros, Y. Amma, Y. Sasaki, T. Mizuno, Y. 
Miyamoto, M. Galili, S. Forchhammer, L. K. Oxenløwe, and T. 

External Awards

Young Scientist Presentation Award
Winner: Shengnan Wang, Alice Dearle, Hiroki Hibino, and 
Kazuhide Kumakura, NTT Basic Research Laboratories
Date: March 17, 2018
Organization: The Japan Society of Applied Physics (JSAP)

For “Growth of Uniform Hexagonal Boron Nitride Film Using 
Chemical Vapor Deposition.”
Published as: S. Wang, A. Dearle, H. Hibino, and K. Kumakura, 
“Growth of Uniform Hexagonal Boron Nitride Film Using Chemical 
Vapor Deposition,” The 78th JSAP Autumn Meeting, Fukuoka, 
Japan, Sept. 2017. 

TELECOM System Technology Award
Winner: Yoji Yamato, NTT Network Service Systems Laboratories
Date: March 22, 2018
Organization: The Telecommunications Advancement Foundation

For “Automatic Verification Technology of Software Patches for 
User Virtual Environments on IaaS Cloud.”
Published as: Y. Yamato, “Automatic Verification Technology of 
Software Patches for User Virtual Environments on IaaS Cloud,” J. 
Cloud. Comp., Vol. 4, 2015. 

The Young Scientists’ Prize, the Commendation for Sci-
ence and Technology by the Minister of Education, Cul-
ture, Sports, Science and Technology
Winner: Masayuki Hashisaka, NTT Basic Research Laboratories
Date: April 17, 2018

Organization: Ministry of Education, Culture, Sports, Science and 
Technology

For his research on electron dynamics in quantum Hall systems. 
This prize is given for experimental studies on fractional-quasipar-

ticle excitations and Tomonaga-Luttinger behaviors in quantum Hall 
systems.

The Young Scientists’ Prize, the Commendation for Sci-
ence and Technology by the Minister of Education, Cul-
ture, Sports, Science and Technology
Winner: Hiroki Mashiko, NTT Basic Research Laboratories
Date: April 17, 2018
Organization: Ministry of Education, Culture, Sports, Science and 
Technology

For his research on a petahertz optical drive with wide-bandgap 
semiconductor characterized by an isolated attosecond pulse. 

This prize is given for experimental studies on observation of peta-
hertz (quadrillion of a hertz) electron oscillation in a gallium nitride 
semiconductor using an isolated attosecond pulse.

Achievement Award
Winner: Yoshihide Tonomura, NTT Service Evolution Laboratories
Date: June 19, 2018
Organization: The Telecommunication Technology Committee

For his contribution to the standardization of immersive live expe-
rience technology.
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Morioka
IEEE Journal of Lightwave Technology, Vol. 36, No. 6, pp. 1304–1308, 

March 2018.
We demonstrate wavelength-division-multiplexed (WDM) and 

space-division-multiplexed (SDM) transmission of probabilistically 
shaped polarization-division-multiplexed (PDM) 1024-state quadra-
ture amplitude modulation (QAM) channels over a 9.7-km single-
mode 30-core fiber, achieving aggregated spectral efficiency of 
297.82 bit/s/Hz on a 12.5-GHz grid and 7.01-Tbit/s spatial-super-
channel on a 25-GHz grid without multiple-input multiple-output 
(MIMO) processing. Actual soft-decision forward error correction 
(SD-FEC) decoding was employed to obtain error-free performance, 
and adaptive rates and spectral efficiencies for individual WDM/
SDM channels have been applied according to their channel condi-
tions by adjusting the SD-FEC overhead without changing the modu-
lation format. Probabilistically shaped PDM-1024-QAM has been 
used to further increase the aggregated achievable rate due to the 
added performance improvement through shaping gain.

  

Hybrid Cladding-pumped Multicore EDFA/Raman Amplifi-
cation for Space Division Multiplexing Transmission Sys-
tems

T. Mizuno, A. Isoda, K. Shibahara, H. Ono, M. Fukutoku, and Y. 
Miyamoto

Optics Express, Vol. 26, No. 10, pp. 13639–13646, May 2018.
We propose and demonstrate a hybrid cladding-pumped multicore 

erbium-doped fiber amplifier (EDFA) and distributed Raman ampli-
fication for space division multiplexing transmission systems. The 
cladding-pumped multicore EDFA is used to efficiently amplify sig-
nals in multiple cores simultaneously, while Raman pumping is used 
to control loss in each core individually. We construct an in-line 
amplified 7-core transmission line, and show that distributed Raman 
amplification can compensate loss variation between cores. Further-
more, we transmit 46 WDM PDM-16QAM signals over a long dis-
tance of greater than 1000 km and demonstrate good transmission 
performance.

  

Temporary Optical Coupler for Optical Cable Re-routing 
without Service Interruption

T. Uematsu, T. Kiyokura, H. Hirota, H. Iida, T. Kawano, and T. 
Manabe

IEEE Photonics Journal, Vol. 10, No. 3, June 2018.

We design a temporary optical coupler to obtain high injection and 
extraction efficiencies while keeping the bending loss low with the 
aim of realizing optical cable re-routing without service interruption. 
The temporary optical coupler injects/extracts signal lights into/from 
a fiber by using fiber bending. The extraction efficiency is improved 
by using a double-clad fiber or a graded-index fiber for light injection 
and extraction, while the injection efficiency is maintained compared 
with that of a conventional temporary optical coupler that uses a 
single-mode fiber. This improvement enables us to realize an optical 
cable re-routing operation support system that requires no service 
interruption.

  

Label Propagation with Ensemble of Pairwise Geometric 
Relations

X. Wu, K. Hiramatsu, and K. Kashino
International Journal of Computer Vision, Vol. 126, No. 7, pp. 

689–713, July 2018.
Spatial verification methods permit geometrically stable image 

matching, but still involve a difficult trade-off between robustness as 
regards incorrect rejection of true correspondences and discrimina-
tive power in terms of mismatches. To address this issue, we ask 
whether an ensemble of weak geometric constraints that correlates 
with visual similarity only slightly better than a bag-of-visual-words 
model performs better than a single strong constraint. We consider a 
family of spatial verification methods and decompose them into fun-
damental constraints imposed on pairs of feature correspondences. 
Encompassing such constraints leads us to propose a new method, 
which takes the best of existing techniques and functions as a unified 
Ensemble of pAirwise GEometric Relations (EAGER), in terms of 
both spatial contexts and between-image transformations. We also 
introduce a novel and robust reranking method, in which the object 
instances localized by EAGER in high-ranked database images are 
reissued as new queries. EAGER is extended to develop a smoothness 
constraint where the similarity between the optimized ranking scores 
of two instances should be maximally consistent with their geometri-
cally constrained similarity.

Reranking is newly formulated as two label propagation problems: 
one is to assess the confidence of new queries and the other to aggre-
gate new independently executed retrievals. Extensive experiments 
conducted on four datasets show that EAGER and our reranking 
method outperform most of their state-of-the-art counterparts, espe-
cially when large-scale visual vocabularies are used.
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