
40 NTT Technical Review

1. Introduction

Recently, with the growth of IP networks, the num-
ber of network elements (NEs) has increased rapidly
and so has the number that one operations support
system (OSS) [1] can manage. OSSs used to be used
only by network operators to monitor and control the
network for network service maintenance. Nowadays,
however, not only carrier operators but also network
service users control the network to open or change
network services or monitor the network to check the
service level agreement (SLA) between users and the
carrier. This trend is leading to an increase in the num-
ber of OSS users, so any interruption of OSS services
is becoming as serious as a network service interrup-
tion: the availability of OSS needs to be as high as that
of the network, as shown in Fig. 1.

These days, computer systems, including OSSs, are
composed of commercially available servers, such as
workstations or personal computers for the following
reasons.

• Systems can be built at a low cost.
• Prevalent servers are made of state-of-the-art

technology.
We propose three methods that shorten the service

down-time to speed up service offerings and maintain
the operation service quality by using an OSS con-
sisting of two or more ordinary servers, based on
state-of-the-art technology. In general, clustering
technology [2]-[4] is used to shorten service down-
time. Our methods minimize the service down-time
and enable complete system restoration by improving
the clustering technology.

2. Current clustering technology

Clustering technology can be applied to ordinary
servers that use state-of-the-art technology. It treats a
set of servers as one system. When some processes
fail due to the failure of an application process or
when all processes on one server fail due to the fail-
ure of hardware, this technology detects the failure
immediately and restores the failed process.

Suppose that a system is composed of two servers.
When trouble occurs in one server, the failed process-
es are restored in either the same server or the other
server as shown in Fig. 2. Trouble that may occur in
the system is classified into two types.

• failure of an application process
• failure of hardware, for example the server’s

CPU or memory

Nobuhiro Kimura†, Akira Yamada, Hikaru Seshake,
and Toshihiro Nishizono
Abstract

In the near future, operations support systems (OSSs) will be required to have higher availability. To
cope with this, we propose three methods: (1) distributed server restart, (2) domain division restart by
HA-SP, our high availability server platform, and (3) service recovery by application process functions.
Our methods concern the platform of a computer system and require no changes in the application
processes, so they are applicable to other kinds of systems. Applying these methods to an OSS for the
intelligent network service of IMT2000 (International Mobile Telecommunications 2000) reduced the
service down-time by 40%.

High Availability Server Platform for
Operations Support System

† NTT Network Service Systems Laboratories
Musashino-shi, 180-8585 Japan
E-mail: kimura.nobuhiro@lab.ntt.co.jp

Regular Papers

Vol. 1 No. 4 July 2003 41

OSS

NEs

Carrier operators Network service users

Goal
Shorten the service down-time

Increasing

Increasing

Fig. 1. Background.

Regular Papers

(1) Software failure Restore the failed process on the same server

Restart services on another server(2) Hardware failure

Active Active Active Standby

Server 2Server 1

Server 2Server 1

Process A

Process A

Server 2Server 1

Server 2Server 1

Process A Process B

Process A

Process B

Server 2Server 1

Server 2Server 1

Process A

Process A

Fig. 2. Current clustering technology.

Regular Papers

42 NTT Technical Review

When a process on server 1 fails, clustering tech-
nology restarts it on the same server. On the other
hand, when some hardware on server 1 fails, all the
processes running on server 1 are restored on server 2
if server 1 is judged to be malfunctioning.

Server 2 can be active or standby. If it is on stand-
by, it is started when server 1 fails. In this case, the
performance of server 2 is the same as that of server
1. If server 2 is already active, running other process-
es, and the set of processes A is switched over to serv-
er 2, the performance of server 2 will drop because it
is running two sets of processes. But when the system
returns to normal, system resources can be used
effectively on both servers again.

3. Study model

Generally, a service is provided through the coop-
eration of many processes. Figure 3 shows some rela-
tionships between services and processes. Coopera-
tion between processes A and X provides service 1,
that between B and X provides service 2, and that
between C and X provides service 3. Processes can be
classified into two groups: individual processes
(processes A, B, and C) and shared processes such as

process X.
An individual process only interacts with a shared

process, which provides primitive services shared by
an individual process. In this model, for example, if
process B fails, service 2 cannot be provided until
process B has been restored. However, services 1 and
3 can both be provided continuously.

On the other hand, if process X fails, none of the
three can be provided because all three processes
need to use its primitive services. Moreover, in a large
system that has many processes, there is no guarantee
that other processes will not also be affected by
process X failing. In other words, we cannot predict
how the failure of a shared process will affect services
in such a system.

4. Requirements

There are two requirements for a high-availability
OSS.
1. Complete system restoration.

However severe the trouble, the system should be
restored completely to provide services.

2. Minimal service down-time.
Failure of the OSS monitoring a network masks

Service 1 Service 3

Process BProcess A Process C

Process X

If process B fails, service 2 cannot be provided.

Service 2

Process BProcess A Process C

Process X

Service 2

Service 1 Service 3

Process BProcess A Process C

Process X

Service 2

If process X fails, none of the three can be provided.

Service 1 Service 3

Individual process

Shared process

Service

Service

Can be provided

Cannot be provided

Fig. 3. Study model.

Regular Papers

Vol. 1 No. 4 July 2003 43

failures of the network. Therefore, OSS service
interruption affects not only OSS users but also net-
work users. Therefore the service down-time
should be as short as possible.
To meet the above requirements, we propose the

following three methods. The first is the “distributed
server restart method”, which restarts all the process-
es affected by the failure to enable complete system
restoration. The second is the “domain division
restart method” to localize the processes to be restart-
ed. These two methods are individually provided in
our high availability server platform called HA-SP.
HA-SP can localize the process to be restarted. How-
ever, some service down-time is inevitable while a
failed process is being restored. To shorten the ser-
vice stoppage, our third method, the “service recov-
ery method”, achieves cooperation between the plat-
form and application process functions. This method
minimizes the time of service switchover from a
failed server to another server. These methods con-
cern the platform of a computer system and do not
need any changes to applications.

5. High Availability Server Platform (HA-SP)

5.1 Distributed server restart method

The distributed server restart method can restart
either individual processes or all processes as shown
in Fig. 4. When an individual process A fails (top left
of Fig. 4), only the failed process is restarted. If a
shared process fails, individual processes A, B, and C
cannot interact with the shared process until it has
been restored. Even when a shared process has been
restored, some processes may not be able to repeat
events that involve interaction with the shared
process. Thus, all processes are restarted to reestab-
lish stable relationships between a shared process and
individual processes (bottom left of Fig. 4).

On the other hand, when a server fails, the system
is restored as follows. If all the processes on a failed
server 1 are individual ones, processes on other
servers provide services continuously and the failed
processes are restarted individually on other servers
(top right of Fig. 4). If there is at least one shared
process on a failed server 2, not only the processes on
the failed server but also processes on other servers
are unable to provide services (bottom right of Fig.
4). In this case, the system isolates server 2 and all the
processes are restarted on servers 1 and 3.

The process monitoring function is required to
implement this method. The operating system (OS)
assigns a process identity (PID) to a process when it

Individual process is restarted.

Software failure

Server 1

Process A

Server 2

Process B

Server 3

Process C

Shared
process

All processes are restarted.

Server 1

Process A

Server 2

Process B

Server 3

Process C

Shared
process

Individual process is restarted.

Hardware failure

Server 1 Server 2

Process B

Server 3

Process C

Process AShared
process

All processes are restarted.

Server 1

Process A

Process B

Server 2 Server 3

Process C

Shared
process

Process A

Process B

Shared
process

Fig. 4. Distributed server restart method.

Regular Papers

44 NTT Technical Review

starts. And OS manages PID correspondence with the
process name until the process fails or stops. If it fails
or stops, OS deletes the PID. This OS function
enables the process monitoring function to get the
PID when the process starts and continuously super-
vise it to detect process failure. Therefore, this
method requires no change in the supervision of the
process.

5.2 Domain division restart method
Because the distributed server restart method

restarts all processes when a shared process fails, it
suspends all the services provided by the system. To
minimize service down-time, the processes to be
restarted should be localized to isolate the effect of
this method.

The domain division restart method divides a sys-
tem into N domains, each having L servers as shown
in Fig. 5. A shared process runs in each domain and
processes related to the shared process run in the
respective domains. Thus, each service can be
processed within one domain. When a shared process
in one domain fails, all the processes in that domain
are restarted. However, processes in other domains
need not be restarted and can provide services con-
tinuously. Consequently, the domain division restart

method can localize the processes to be restarted
within the domain.

5.3 Restart phase
Combining the distributed server and domain divi-

sion restart methods, we define four restart phases as
shown in Fig. 6.

Phase 1 restarts individual processes. It is applied
when an individual process fails.

Phase 2 restarts all processes in one domain.
Phase 3 restarts the OSs of all servers in one

domain. Either phase 2 or 3 is applied when a shared
process fails.

Phase 4 restarts the OSs of all servers in all
domains.

The recovery time increases in the order from 1 to
4 and the likelihood of recovery increases in the same
order. When a failure occurs, an adequate restart
phase that takes the shortest time for restarting should
initially be selected to correct the failure. However, if
that phase does not restore the failure, the method
escalates up the restart sequence. If the system still
cannot be restored by the “all restart phase”, this
phase is repeated. In almost all cases, this method can
restore a system completely and can shorten service
down-time.

Distributed server
restart method

Implement the shared
processes in each
domain

Domain division
restart method

Domain 1 Domain 2 Domain N

Server 1

Process A

Server 2

Process B

Shared
process

Server 3

Process C

Server 4

Process D

N × L

Server 1

Process A

Server 2

Process B

Shared
process

L

Server 1

Process C

Server 2

Process D

Shared
process

L

Domain division

Fig. 5. Domain division restart method.

Regular Papers

Vol. 1 No. 4 July 2003 45

6. Service recovery method

The server should initialize all the processes in a
domain when restoring services by applying phase 2
or 3 in the domain division restart method. In that
case, the recovery time becomes long depending on
the number of processes. Moreover, the server
reboots the OS in phase 3. The recovery time
becomes long with the reboot time depending on the
number of processes, or the characteristics of the OS.

Here, we propose a rapid service recovery method
that reduces the influence of the number of processes
and hardware and OS characteristics.

Figure 7 shows a system composed of two domains,
each having two servers. An active process and a
standby process are located at the same time in dif-
ferent domains. The active process actually provides
services while the standby process provides services
only when the active one fails. Generally, before
processes provide services, they have to be started
and initialized. We defined the active and standby
processes as follows.

• Active process: a process that has been started
and initialized

• Standby process: a process that has been start-
ed but not initialized

This method simultaneously starts an active process
and a standby process in the different domains. While
active process A provides service in domain 1, this
method can complete the OS reboot and start the
standby process in domain 2. If the server in domain

1 fails, the server in domain 2 restores failed process
A rapidly just by initializing standby process A. The
server can skip the OS reboot and can start processes
while restoring process A. Therefore, switching from
active to standby processes hardly depends on the
number of processes or OS characteristics.

Another merit of our proposal is low usage of sys-
tem resources. Because the standby process is only
started but not initialized, it consumes memory but no
CPU resources. However, if more rapid service
recovery is needed, active processes for the same ser-
vices can be implemented in each domain.

7. Example of restart

These three methods enables complete and rapid
service recovery. When a shared process fails in
domain 1, all or a group of processes are restarted to
achieve complete system recovery by the distributed
server and domain division restart methods, as shown
in the upper half of Fig. 8.

Thus, the more processes running in domain 1, the
longer the restart takes. Therefore, these two methods
should successfully shorten the down-time of ser-
vices in domain 1. When the domain division restart
occurs in domain 1, all standby processes (processes
A and B) in domain 2 become active via the server
recovery method. In turn, processes A and B in
domain 1 restart as standby processes as shown in the
lower half of Fig. 8.

Unlike the general clustering method, which

Trouble occurs

Trouble is fixed

Escalation

Phase 4: All restart.

Phase 3: All server domain restart.

Phase 2: All process domain restart.

Phase 1: Individual process restart.

Ordinary condition

Fig. 6. Restart phase.

Regular Papers

46 NTT Technical Review

Server

Process A

OS

Process B

OS

Server

Active process

Domain 1

Process A

InitializeStart

Server

Process A

OS

Process B

OS

Server

Standby process

Domain 2

Process A

InitializeStart

Change standby
process to active
process

Running active and standby processes in different domains

Fig. 7. Service recovery method.

Domain 1

Process D

Process A

OS

Process C

Process B

Shared
process

OS

Domain 2

Process B

Process C

Shared
process

OS

Process A

Process D

OS

Domain 1

Process D

Process A

OS

Process C

Process B

Shared
process

OS

Domain 2

Process B

Process C

Shared
process

OS

Process A

Process D

OS

All standby processes become active.Processes restart as standby ones.

Domain 1
All processes restart.

Process

Process

Standby

Active

Fig. 8. Example of restart.

Regular Papers

Vol. 1 No. 4 July 2003 47

restores service but does not repair the failed domain
or server, our domain division restart method restores
domain 1 automatically. For this reason, if a failure
occurs in domain 2 afterward, domain 1 can restore it
without interruption.

8. NE supervision of OSS

Figure 9 shows an OSS example applying the three
methods. The OSS is used for controlling and super-
vising NEs in an intelligent network service of
IMT2000 (International Mobile Telecommunications
2000). The NE supervising function consists of a
communication process (process X) and supervision
processes (processes A and B). The communication
process establishes connections between the NEs and
the OSS. It also delivers messages from an OSS
application process to an NE, and vice versa. The
supervision process performs actions such as testing
an NE, according to the messages it receives. In this
model, NE and OSS communicate with each other by
common management information protocol (CMIP)
and events from NE are filtered by an event forward-
ing discriminator (EFD) [5], [6] on the NE. In our
system, NEs send an M-event-report after the OSS
has set the discriminator condition in EFD using the
M-set requirements.

In this example, the OSS supervises 40 nodes.
Process A (which manages NEs 1 to 20) runs in
domain 1 and process B (which manages NEs 21 to
40) runs in domain 2 to balance the load. And their
standby processes run in different domains so the ser-
vice recovery method can be used. During initializa-
tion, active processes A and B send M-set require-
ments to EFD on the NE and are ready to receive
events from NEs. However, the standby processes,
which are not initialized, do not receive events from
NEs. Process X is duplicated and runs in both
domains 1 and 2 because the supervision processes
share it.

If domain 1 fails, active processes A and X in
domain 1 stop. And standby process A in domain 2 is
initialized immediately and it sends the M-set
requirement to EFD in NEs 1 to 20. Using this exam-
ple system, we measured the service down-time
before and after applying our three methods. The
results are shown in Fig. 10.

In this OSS, there are about 80 processes for down-
loading firmware, updating NE files, and so on.
Before we applied our three methods, there was only
one shared process (process X) located in one of the
servers. Each supervision process was also single and
located in each server. When the shared process
failed, all the processes were started and initialized.

Domain 1 or server 1 fails

Process A

Domain 1 (server 1) Domain 2 (server 2)

NEs 1 to 20

NE-A supervision NE-B supervision

NEs 21 to 40

Process B

Process X

Process A Process B

Process X

Process A

Domain 1 Domain 2

NEs 1 to 20 NEs 21 to 40

Process B

Process X

NE-B supervision NE-A supervision

Change a process

Active process

Standby process

Fig. 9. OSS applying our three methods.

Regular Papers

48 NTT Technical Review

The services were interrupted until all restoration had
finished. As shown in the left of Fig. 10, the service
down-time consists of the starting of shared process,
starting of individual processes, and initializing of
individual processes. After we applied the three
methods, the service down-time was shorter, as
shown in the left of Fig. 10. The shared process fail-
ure in domain 1 did not affect the services for NE-B
supervision because the shared process existed in
domain 2. This means that the service down-time for
NE-B was zero. For NE-A, compared with the left of
Fig. 10, the down-time for starting the individual and
shared processes was eliminated and replaced by the
shorter time for switching the process from standby
to active. As a result, the down-time was reduced by
40%.

While switching the process from standby to active
in domain 2, the three methods restore domain 1.
Therefore, if a failure occurs in domain 2 afterward,
domain 1 can restore it without interruption. The time
to restart standby process in domain 1 is shown as
dashed line in the right of Fig. 10. This time don’t
affect the service down-time for NE-A and NE-B.

9. Conclusion

We proposed a high-availability distributed OSS

that uses three new methods. The distributed server
restart method can restart any process. The domain
division restart method divides a system into N
domains to limit the effect of the distributed server
restart method. The domain service recovery method
runs an active process and a standby process in dif-
ferent domains, and switches the process in another
domain from standby to active if an active process
fails.

These methods have been integrated into a high
availability server platform called HA-SP that is
applicable to various systems. The distributed server
and domain division restart methods are independent
of applications. The service recovery method is
implemented through application functions. They
were first applied to the OSS for the intelligent net-
work of IMT2000. In this system, we could reduce
the service down-time by 40%. We also applied HA-
SP to the OSS for VoIP (Voice over IP) service provi-
sioning [7], [8] and to the OSS for equipment man-
agement of an MPLS-based IP network. We were
able to make these OSSs highly available without
modifying the application programs. These methods
enable a system to be restored by only restarting the
failed process.

Service down-time
after applying our three
methods

Service down-time
before applying our three
methods

NE-A
supervision

NE-B
supervision

NE-A
supervision

NE-A
supervision

NE-B
supervision

Domain #1 Domain #2

Starting
shared processes

Starting
individual processes

Initializing
individual processes

1.0

Restart standby processes

1.0

0.6
Initializing individual
processes

Switching to active
from standby

Fig. 10. Service down-time.

Regular Papers

Vol. 1 No. 4 July 2003 49

References

[1] Ishikawa, “High reliable switching node operation support system
based on server,” APCC/OECC, Oct. 1999.

[2] http://www.sun.com/service/products/suncluster/index.html
[3] http://www.hp.com/techservers/clusters/
[4] http://www.veritas.com/vcsguided/index.html
[5] ITU-T Recommendation X.734.
[6] H. Seshake, T. Oimatsu, and N. Akiyama, “DATA Communication

Platform in Distributed Operation System Based on TMN,” IEEE,
Vol. 2, pp. 15-19, Apr. 1996.

[7] T. Ichijo, K. Yamane, M. Aso, and Y. Hibino, “The OSS architecture
for VoIP service ordering based on the MSF network,” APSITT2001,
pp. 259-263, Kathmandu, Nepal/Atami, Japan, Nov. 2001.

[8] T. Furukawa and K. Yamane, “A Study on Service Order of VoIP Ser-
vice Including SLA Information,” APNOMS 2002, Jeju Island,
Korea, pp. 120-131, Sep. 2002.

Akira Yamada
Engineer, the First Promotion Project, NTT

Network Service Systems Laboratories.
He received the B.E. and M.E. degrees in com-

puter science from Nihon University in 1994 and
2000, respectively. Since joining NTT Network
Service Systems Laboratories in 2000, he has
worked on OSSs. His research interests include
integrated operations systems and recently enter-
prise information portals.

Hikaru Seshake
Senior Research Engineer, the First Promotion

Project, NTT Network Service Systems Labora-
tories.

He received the B.S. and M.S. degrees in sci-
ence from Tokyo Institute of Technology, in
1990 and 1992, respectively. In 1992, he joined
the Switching Systems Laboratories (now NTT
Network Service Systems Laboratories), Tokyo,
Japan. He worked on the development of conges-
tion control functions for the system, adaptation
technology for enterprise application integration,
and the high-availability system platform. He is
currently working on IP control and management
service research.

Toshihiro Nishizono
Senior Research Engineer, Supervisor, Net-

work Software Service Project, NTT Network
Service Systems Laboratories.

He received the B.S., M.S., and Ph.D. degrees
in information engineering from Kyushu Univer-
sity, Fukuoka, in 1978, 1980, and 1990, respec-
tively. In 1980, he joined the Electrical Commu-
nication Laboratories, Nippon Telegraph and
Telephone Public Corporation (now NTT),
Tokyo, Japan. He worked on the development of
DDX packet switching systems and ATM
switching systems. From 1990 to 1993, he
worked in Advanced Telecommunication
Research Laboratories, Kyoto, Japan, on soft-
ware specifications and distributed operating
systems. From 1998 to 2001, he was engaged in
international communication service deployment
and IP service development in NTT Communi-
cations, Tokyo, Japan. He is currently working
on IP control and management service research.

Nobuhiro Kimura
Research Engineer, the First Promotion Pro-

ject, Network Software Service Project, NTT
Network Service Systems Laboratories.

He received the B.E. and M.E. degrees in mate-
rials engineering from Nagoya University,
Nagoya, in 1993 and 1995, respectively. In 1995,
he joined NTT Network Service Systems Labo-
ratories, Tokyo, Japan. He worked on the devel-
opment of congestion control functions for the
system, the OSS for IP networks, and the high-
availability system platform. He is currently
working on IP control and management service
research.

