
50 NTT Technical Review

1. Introduction

These days, many services are available on carrier
IP networks and more will appear in the future. For
example, VoIP (Voice over IP) services for con-
sumers are now increasing and VoIP services for
business users, including dial-in and call transfer, are
expected. Another example is IP-VPN service, which
provides a virtual private network. It is a popular ser-
vice on carrier IP networks and remote VPN access
services or VPN exchanges services will increase in
the near future. Network elements (NEs), such as
routers and servers, will change to provide such
dynamically changing services.

When we provide services to customers, we start
with a service order (SO) from the customer and put
the configuration data in NEs so as to provide the ser-
vices that the customer ordered. To automate this
flow, we use two management systems. A customer
relationship management (CRM) manages customer

information and SOs from customers. A service man-
agement system (SMS) gets the SOs from the CRM
and sets and stores NE configuration data for the SOs.
The SMS decides which NEs should accommodate
the customers for the services, and translates the SOs
into command strings that make the specified NEs
change their configuration data and sets the SO para-
meters for the specified NEs. Finally, the SMS stores
the resulting configuration data and tells the CRM
that the SO procedures have finished.

Because SMS must carry out such complicated
processes, the SMS implementation must be very
flexible when there are frequent modifications of net-
work or services. Currently, however, no commercial
systems that meet these requirements are applicable
to a large carrier network.

We have developed an SMS that supports auto-con-
figuration over many NEs to provide services in
response to SOs from a CRM. Its architecture allows
a flexible response to changes in:

1) service specifications
2) network structure, and
3) NE specifications
This flexibility is achieved using two methods

Ken’ichi Yamane†, Tsuyoshi Furukawa,
and Toshihiro Nishizono
Abstract

This paper proposes interface techniques that enable service management systems (SMSs) to make
flexible connections with customer relationship management systems (CRMs) and network elements
(NEs). In the service ordering process for new IP services, the proposed methods achieve high flexibil-
ity in the SMS implementation. The XML-based service order information description at the CRM-SMS
interface allows quick IP service addition because the XML parsing mechanism means that interface pro-
grams hardly have to be changed. The virtual NE structure, which divides NE functions into atomic
primitives, can introduce NEs provided by new vendors without modifying service order applications.
We discuss some development results and evaluate the flexibility of the CRM and NE interfaces and the
SMS performance.

Service Management System for IP
Services

† NTT Network Service Systems Laboratories
Musashino-shi, 180-8585 Japan
E-mail: yamane.kenichi@lab.ntt.co.jp

Regular Papers

Vol. 1 No. 4 July 2003 51

based on the adapter technology employed in the
TMForum (Tele Management Forum) standardiza-
tion. One uses the XML (eXtensible Markup Lan-
guage) for describing the interfaces between CRMs
and SMSs; the other uses our virtual NE concept,
which abstracts NE service functions for commonly
describing the interfaces between the SMS and NEs
whose functions differ between vendors. These two
methods have been applied to an SMS providing
commercial VoIP services.

2. Overview of SMS

2.1 Target network
We considered a network based on the network

model [1] put forward by the MSF (Multi-service
Switching Forum). In MSF, network functions are
logically divided into four planes: the adaptation,
switching, control, and application planes. There is
also a management plane, which includes several
management functions, for example fault manage-
ment, configuration management, and accounting

management functions. An essential characteristic of
the architecture is its flexibility in terms of the tech-
nology chosen to implement the functionality of each
plane.

The target network (Fig. 1) consists of edge nodes
in the adaptation plane (each is a media gateway
(MG)), core nodes in the switching plane, servers
such as call agents (CAs) in the control plane, and
CRM and SMS in the management plane, which
manage all the nodes and servers. A customer is
accommodated by an MG via an access network or
public switched telephone network (PSTN). MG-MG
communications for transmitting VoIP packets run
through the core nodes. The CA supports protocols
such as SIP (Session Initiation Protocol) [2], H.323
[3], and Megaco (RFC3015) [4] to control VoIP ser-
vices. The service provider can provide customers
with a VoIP service [5] as well as other IP services
such as IP-VPN [6]. This paper explains the SO flow
between the CRM and NEs via our SMS using VoIP
service as an example.

MG MG

Core node

Customer

PSTN

SMS

Customer

CASignaling

network
CA

CRM

SO

SO

Focus of this paper

Server Application planes

Customer

CA: Call Agent
CRM: Customer Relationship

Management
MG: Media Gateway
PSTN: Public Switched Telephone Network
SMS: Service Management System
SO: Service Order

Control plane

Switching plane

Adaptation plane

Management plane

Fig. 1. Target network and our scope.

Regular Papers

Regular Papers

52 NTT Technical Review

2.2 System architecture
The SMS is based on the NGOSS (New Generation

Operation Support System) architecture [7], defined
in TMForum. It consists of a common data bus, com-
mon database, and several operation functions. Other
systems and NEs can be connected to this common
data bus through the adapters, which transform ven-
dor-specific interfaces into a common interface used
in the system. Figure 2 outlines the NGOSS architec-
ture. A cost effective and flexible system construc-
tion is possible by connecting COTS (Commercial
Off The Shelf) products, which perform some of the
operations functions, to a common data bus through
the adapters. The custom-developed functions per-
form the rest of the operations for setting the config-
uration data in the NEs in cooperation with the COTS
products. The CRM is also connected through the
adapters to interact with the SMS. The methods pro-
posed in this paper are mainly concerned with the
adapters described in the NGOSS architecture.

3. Interface between CRM and SMS

To decide the interface between the CRM and SMS,
we examined application layer data formats and
lower layer protocols.

3.1 Application layer data formats
There are three main data formats that can be used

for communication between the SMS and CRM for
handling SO flows.

(1) Binary format over socket, CORBA, etc.
(2) Character strings using comma separated val-

ues (CSV)
(3) Tag structure using XML
The binary format is mainly used by legacy sys-

tems. It can be processed at high speed and allows
rich data structures, but it is hard to understand, and
data transmission formats cannot be easily changed,
so software maintenance is very difficult. Many prob-
lems such as the difficulty of correcting interface
inconsistency will occur if we extend the system to
interconnect with other systems. CORBA (Common
Object Request Broker Architecture) alleviates this
problem by using IDL (Interface Description Lan-
guage) and IIOP (Internet Inter-ORB Protocol), but
there are still many problems when connecting dif-
ferent commercial CORBA products employed in
different OSSs. When we connect two objects
through CORBA, we define the interfaces using IDL.
The descriptions are interpreted into two interface
programs (the stub and skeleton) for each object.
Generally, the programming languages of the two
objects are different. This mechanism works well
when the interpretation is done by the same commer-
cial CORBA products or when the interface defini-
tions are simple. However, when we define compli-
cated interfaces for different commercial CORBA
products, problems occur because the interpretation
of such a complicated interface frequently differs
between commercial CORBA products. So when we
connect two or more objects with CORBA, we can
only use simple IDL descriptions, such as “wchar” or
“wstring”, which denote the simple data type of a
character or a string of characters. Complicated struc-
tures, such as “any” for any data type or “struct” for

NE/EMS

CRM

Custom developed functions

Common data bus (CORBA)

Other
systems
(COTS)

Service management system

Resource
management

VPN
management

Performance
management

Network
testing

Service
ordering

Service failure GUI

Network failure

Configuration
management

COTS: Commercial Off The Shelf
EMS: Element Management System
GUI: Graphical User Interface
NE: Network Element
VPN: Virtual Private Network

• • •

• • •
GUI

COTS

Common database

Adapters

Fig. 2. System architecture.

Regular Papers

Vol. 1 No. 4 July 2003 53

structured data, cannot be used.
The CSV data format is often used when connect-

ing systems for simply exchanging data, because it
can be easily created with commercial software such
as a spreadsheet and is easy to understand because it
has a simple text format. However, its descriptive
ability is too weak to easily describe the structured
data types required for defining SO parameters that
are frequently changed when adding new network
services. So CSV is not suitable for the interface
between the CRM and SMS.

The XML data format combines the advantages of
the binary and CSV formats. Tags can define a struc-
tured data type, and since it is a text format, it is easy
for us to understand. Furthermore, if we extend it
with XSL (eXtensible Stylesheet Language) [8], then
it becomes easy to display on a Web browser. XML is
used for combining systems in various fields, such as
electronic commerce. In the network management
field, trials have already begun, such as expressing
the management information base (MIB) on the com-
mon management information protocol (CMIP) by

XML. For these reasons, we chose XML for describ-
ing the data formats for communication between the
SMS and CRM (Fig. 3). Table 1 summarizes the com-
parison of these application layer data formats.

3.2 Lower layer protocol
To transmit the application layer data described in

XML, we consider the session layer protocol between
the application objects. Two kinds of protocols are
currently used for this purpose: synchronous commu-
nication like IIOP and asynchronous communication
like MOM (Message Oriented Middleware). Since
synchronous communication allows response signals
which indicate whether the communication peer has
received data normally or not, it can provide assured
communication. On the other hand, asynchronous
communication need not wait for the response from a
communication peer, so it allows faster dialogues.
For service ordering, assured communication is more
important than speed. For example, when SO com-
mands to NEs fail, the SO flows should be rolled back
to the last successful synchronous point. Synchro-

SMS

CRM

Only need to add/change tags when a
service is added or changed.

<serviceType>VoIP</serviceType>

<soType>register</soType>

<soId>1234567890</soId>

<contractId>1000000001</contractId>

<sipURL>aaa@bbb.com</sipURL>

<numberRequest>on</numberRequest>

<otherServiceData1>

<data>ddd</data>

</otherServiceData1>

Basic service information

Additional service
information

CA

Set sipURL

Common information

<otherServiceData2>

<data>eee</data>

</otherServiceData2>

Request to gather the
 information

COTS

Fig. 3. Flexible structure of XML-based data of SO.

Table 1. Comparison of application layer data formats.

Binary format CSV format XML format

Very good Good Poor

Very good Poor Very good

Poor Poor Very good

Poor Good Very good

Performance

Ability to describe structured data

Ease of software maintenance

Inter-connectivity

Regular Papers

54 NTT Technical Review

nous communication like IIOP allows such rollback
mechanisms. In addition to the better compatibility
with the communication inside the SMS, which is
based on CORBA, we chose synchronous communi-
cation on IIOP. An overview of communication
between the CRM and SMS using XML documents
over CORBA is shown in Fig. 4. The outline of actu-
al SO processing flow treated in the adapter is as fol-
lows.

(1) The adapter in the SMS contains the stub and
skeleton programs translated from the IDL
description for CORBA communication with
the CRM. An XML parser for analyzing the
XML documents of SO information is created.

(2) Using the skeleton program, the adapter gets
the XML document from the CRM over the
CORBA interface, which encapsulates the doc-
ument in the “wstring” data type.

(3) It passes the document to the XML parser to
create a Java object of the SO information
which can be handled in the SO applications.

(4) Finally, the adapter calls an appropriate SO
application with the Java object.

4. Interface between SMS and NEs

4.1 Layered interface modules
IP network services are provided through the coop-

eration of many types of functions that are widely dis-
tributed on different types of NEs. We use the gener-
ic term network element (NE) for routers, servers,

and other elements located in an IP network. For
example, a VoIP service based on SIP is provided by
SIP-server functions (such as registration, proxy, and
redirect functions) cooperating with location-server
and DNS-server functions. The SIP-server functions
can be integrated into a single server (i.e., an NE) or
distributed to three servers. Furthermore, before the
SO parameters are set in the servers for VoIP service
functions, the VoIP terminal must be connected to the
IP network. For this purpose, SO parameters for IP
services are set up in edge-routers, RADIUS (Remote
Authentication Dial In User Service)-servers, etc.
SMS must manage all of the above types of NEs to
provide end users with the VoIP service, so the SO
processing for IP network services is complicated.

Furthermore, to offer new service quickly and
cheaply, it will be necessary to use NEs from multi-
ple vendors. Thus, SMS must:
• Minimize the impact of changes in service specifi-

cations and the addition of new services.
• Minimize the impact of changes in network topolo-

gy like the addition of new types of NEs or the dis-
tribution and integration of functions in NEs.
Next, we describe the NE-adapter that connects

NEs with the SMS to set SO parameters. We divided
SO processes into: i) an SO-application that checks
the consistency of all parameters, decides which NE
should be set with the SO parameters, manages the
result of all SO processes, and so on and ii) an NE-
adapter, which translates the SOs into the appropriate
NE command strings, communicates with the NEs,

TCP/IP

CRM SMS

Application
Application

ORB ORB
CORBA/IIOP

Parser

Skeleton Stub

CRM
adapter

XML document

Java object

XML document

SkeletonSkeletonSkeletonStubStubStub

Fig. 4. Overview of XML over CORBA communication.

Regular Papers

Vol. 1 No. 4 July 2003 55

and sets the command strings in the NEs. We sepa-
rated the NE-adapter functions from SO-application
functions to localize the impact of changes in NE
implementations (which may differ among vendors)
or service specifications in the NE adapter. Further-
more, we divided the NE-adapter into a common-NE-
adapter and vendor-interface modules.
• Common-NE-adapter

This adapter provides common NE-independent
interfaces such as “set” and “get” to SO-applications.
It also distributes SO parameters to the vendor NE-
adapter described below. It ensures that an SO-appli-
cation can always handle SO commands and parame-
ters in common forms, so there is no need to worry
about what kind of vendor NEs exist in the network.
It can be developed independently of the NE specifi-
cations (Fig. 5).
• Vendor-NE-adapter

An adapter is prepared for each vendor’s NE. This
adapter directly communicates with the actual NE
using its specific protocol, and translates the common
SO parameters into the specific NE command strings.
It conceals vendor-dependent specifications.

This two-layer structure localizes the impact of NE
implementation within the vendor-NE-adapter. The
common-NE-adapter localizes the impact of the net-

work structure within itself and also simplifies the
application programming interfaces offered to an SO-
application.

4.2 Virtual NE
The structure of interface modules between the

SMS and NEs described above enables flexible com-
position. However, in the following situations, it is
still necessary to change the SO application accord-
ing to changes in NE implementation.
• When two or more functions integrated into NEs of

one type are distributed to two or more types of
NEs.

• When an NE with new functions is added to the net-
work by service addition.
For example, when a CA supports three SIP-server

functions, the SO-application puts SO parameters
only in the NE-adapter for the CA. But when the three
functions are divided among three kinds of servers,
the SO-application must put the SO parameters in
three adapters.

To avoid the problem, we employ a virtual network
element (VNE). This represents a primitive set of
functions atomically divided from the original NE’s
functions. That is, an NE is divided into several
VNEs, each of which can be separately located on a

SO-application

Common-NE-adapter

SO-request

Primitive APIs
SO data

distribution

Set (SO parameters)

Vendor-NE-adapter

Convert and set SO dataNE-specific

Command NE-specific

Command

Server A
module

Server B
module

Server C
module

Router A
module

Router B
module

Server A Server B Server C Router A Router B

Common

SO parametersCommon

SO parameters

To server A

NE-adapter

To router B

Common

SO parameters

Fig. 5. Overview of NE adapter processing.

Regular Papers

56 NTT Technical Review

different element acting as a type of primitive NE. For
example, when a CA has a SIP-server function and
gatekeeper function, the CA is divided into “registra-
tion-server”, “proxy-server”, “redirect-server”, and
“gatekeeper” VNEs. If the SO application is devel-
oped on this VNE model, it is not influenced by a
change in the distribution of NE functions as long as
the VNEs were appropriately configured, because
even if functions in one NE are distributed to two or
more NEs, an VNE is not divided and its function
does not change.

Figure 6 outlines the processing of SO parameters.
Since SO application is aware only of VNEs and sets
SO parameters in VNEs, the NE-adapter conceals
differences among vendor implementations. The sys-
tem is flexible with respect to allowing NEs to be
changed to ones provided by other vendors.

4.3 SO processing flow in SMS using VNE
Figure 7 shows the flow of processing within an

SO-application using the VNE concept. We roughly
divide the functions of the SO-application into three
functional blocks: scenario control, SO setup, and SO
log read/write.
1. When the CRM adapter receives SO data, it noti-

fies the scenario control function in the SO appli-
cation. This function executes the operation sce-
nario indicated in the header part of the SO para-
meters. All the scenarios are stored in the sce-
nario database.

2. The SO setup function, which is called by the sce-
nario control function, decides which VNEs
should be set up with the SO parameters using the
configuration database. This function also calls
the common-NE-adapter with the list of selected
VNEs.

3. The common-NE-adapter refers to the VNE list
to obtain the actual NEs using the configuration
database. It also sets the SO data in the vendor-
NE-adapter prepared for each vendor’s NE.

4. The vendor-NE-adapter converts the SO parame-
ters into the vendor-NE-specific command
sequences and sets them in actual NEs.

5. When all processes have finished, the scenario
control function reports the results to CRM.

These processes are logged by the log R/W func-
tion in the log database. This lets the scenario control
function perform an SO rollback if process errors are
detected.

SO application

NE-
adapter

Vendor NE

Common-NE-adapter

Vendor-NE-adapter

VNE 1

VNE 4

VNE 5 VNE 1

VNE 2

Service A Service BSMS

VNE 1 VNE 2 VNE 3 VNE 4 VNE 5 VNE 6

VNE ⇔ NE Convert Function

NE1 I/F NE 3 I/FNE2 I/F

NE 1 NE 3NE 2

Physical SO data setting in actual NEs

VNE 1 VNE 2

VNE 3

VNE 3

VNE 4

VNE 5

Logical SO parameter setting to VNEs

Fig. 6. Outline of SO data processing using vendor network elements (VNEs).

Regular Papers

Vol. 1 No. 4 July 2003 57

5. Evaluation

5.1 Flexibility of CRM interface
We built a flexible CRM interface by introducing

adapters with the XML-based interface. As a result,
we could add new services for business users (such as
call-transfer and dial-in), within three months after
determining service specifications, compared with
the usual six months. Most of the development was
done in the SO-application programs. The interface
program development effort was about 1/10 of that
for application program development. In the interface
program, we only needed to develop definitions of
new XML tags and a few additions of SO-application
call sub-routines. The session layer communication
drivers needed no modification. This shows that our
XML-based interface has enough flexibility.

5.2 Flexibility of NE interface
We were able to add a new CA supplied by a dif-

ferent vendor from the old ones. In the interface for
setting SOs, the command name, parameter formats,
and communication protocols are different from
those of the old CA. However, the development was
completed within two months because we achieved it

simply by added a new VNE module without chang-
ing the application programs or the common NE-
adapter. This example also shows the validity of the
NE adapter architecture based on the VNE.

5.3 Performance
In general, flexibility and performance have a

trade-off relationship. In particular, higher perfor-
mance is needed for the parsing XML. The perfor-
mance evaluation of our SMS showed that it is possi-
ble to process one SO in less than 1 s, and to process
thousands of SOs in one hour in the condition that the
SOs flow from the CRM to NEs (the SO currently
uses 42 XML tags). This satisfies the user require-
ments and will have sufficient performance for gen-
eral service order processing systems. However, in
the future, the performance should be improved using
appropriate parser algorithms because we expect the
number of XML tags to increase to handle more com-
plicated services.

6. Conclusion

To cope with increasingly complex IP services, we
have proposed interface technologies using two types

SO-application

4 To vendor-NE-adapter

Service processing
scenario

VNE info

Service ⇔ VNE info

VNE ⇔ NE info

SO log object

Scenario database

Configuration database

Configuration database

Common database

Log database

Scenario control function

 SO log
 R/W function

SO setup function

Read

Read

Read

Read/write

Read

Control

Control

CRM

CRM
adapter Notify

Common-NE-adapter3

Notify

SO data

SO data

with VNE list

1-1 1-2

2

5

Control

Fig. 7. Service ordering process using VNEs.

Regular Papers

58 NTT Technical Review

of adapters: XML technology for the interfaces
between CRM and SMS and a virtual network ele-
ment concept for the interface between SMS and
NEs.

In the service ordering process for new IP services,
these techniques make the SMS implementation flex-
ible. The XML-based service order information
description at the CRM and SMS interface allows
quick IP service addition. When adding new services
for business users, the changes in the interface pro-
grams amount to only 1/10 of those of the application
programs thanks to the parsing mechanism. The vir-
tual NE structure which divides NE functions into
atomic primitives lets us introduce NEs provided by
new vendors without modifying service order appli-
cations. These results were confirmed by implement-
ing new VoIP services and introducing a new SIP
server. The methods described in this paper are
applicable to other IP service provisioning systems,
such as IP-VPN service or content delivery service.

References

[1] MSF, “Multiservice Switching Forum Implementation Agreement,
MSF-ARCH-001.00-FINAL IA,”, 1. May 2000.

[2] IETF, “SIP: Session Initiation Protocol,”, 1999.
[3] ITU-T, “ITU-T Recommendation H.323,”, 1996.
[4] IETF RFC3015, “Megaco Protocol Version 1.0,”, 2000.
[5] Takehisa Ichijo, “The OSS architecture for VoIP service ordering

based on the MSF network,” APSITT2001, Kathmandu, Nepal/Atami
Japan, pp. 259-263, Nov. 2001.

[6] Tamotsu Ohyama, “A Study of Operation Support System Architec-
ture,” TECHNICAL REPORT OF IEICE TMWS2001-19, p. 115,
2001.

[7] TMF, “NGOSS Architecture Technology Neutral Specification -
TMF053 v3.0,”, 2003.

[8] W3C Recommendation, “Extensible Markup Language (XML) 1.0,”,
1998.

Tsuyoshi Furukawa
Engineer, First Promotion Project, NTT Net-

work Service Systems Laboratories.
He received the B.S. and M.S. degrees in elec-

tronics from Waseda University, Tokyo, in 1993
and 1995, respectively. In 1995, he joined the
Optical Network Laboratories, Nippon Tele-
graph and Telephone Public Corporation (now
NTT), Tokyo, Japan. He worked on the develop-
ment of operations support systems for the opti-
cal transport network and IP network. He is cur-
rently working on IP control and management
service research.

Toshihiro Nishizono
Senior Research Engineer, Supervisor, Net-

work Software Service Project, NTT Network
Service Systems Laboratories.

He received the B.S., M.S., and Ph.D. degrees
in information engineering from Kyushu Univer-
sity, Fukuoka, in 1978, 1980, and 1990, respec-
tively. In 1980, he joined the Electrical Commu-
nication Laboratories, Nippon Telegraph and
Telephone Public Corporation (now NTT),
Tokyo, Japan. He worked on the development of
DDX packet switching systems and ATM
switching systems. From 1990 to 1993, he
worked in Advanced Telecommunication
Research Laboratories, Kyoto, Japan, on soft-
ware specifications and distributed operating
systems. From 1998 to 2001, he was engaged in
international communication service deployment
and IP service development in NTT Communi-
cations. He is currently working on IP control
and management service research.

Ken’ichi Yamane
Senior Research Engineer, First Promotion

Project, NTT Network Service Systems Labora-
tories.

He received the B.S. and M.S. degrees in math-
ematics from Nagoya University, Nagoya, in
1986 and 1988, respectively. In 1988, he joined
the Switching Systems Laboratories, Nippon
Telegraph and Telephone Public Corporation
(now NTT), Tokyo, Japan. He worked on the
development of the public switched telephone
network (PSTN) and its operations support sys-
tems, ATM network maintenance, design system
development for ATM virtual paths, and so on.
He is currently working on IP control and man-
agement service research.

