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1. Introduction

The World Wide Web lets individuals broadcast
contents, and streaming data is rapidly accounting for
a higher percentage of the total traffic carried. Con-
ventional broadcast techniques, however, waste too
much bandwidth because the servers send streaming
data directly to each recipient, even if there are many
of them. To overcome this difficulty, multicast tech-
nologies have been intensively developed. 

IP-multicast is the most popular mechanism for
multicasting to recipients located over a wide area.
Many multicast routing protocols (e.g., DVMRP [1],
MOSPF [2], and PIMSM [3]) for IP-multicast have
been proposed and most are being investigated for
standardization at IETF (Internet Engineering Task
Force). The protocols have been intensively studied
from various viewpoints. When used in a wide-area
network, PIMSM is one of the most efficient and sta-
ble protocols because it constructs reverse-path-
based trees associated with only active clients. How-
ever, to use IP-multicast, we need special IP address-
es, called IP-multicast addresses, to specify the mul-
ticast groups. This makes it difficult for individuals to

multicast streams because it is necessary to obtain a
unique IP-multicast address whenever IP-multicast-
ing is desired. Furthermore, all routers need to be able
to route IP-multicast packets, which restricts IP-mul-
ticast to only closed or experimental networks such as
MBONE [4]. This is why it is impossible for individ-
uals to use IP-multicast without difficulty. 

IP-unicast-based multicasting technologies are
attracting much attention as personal broadcast tools.
One multicast technology that has been proposed is
Flexcast [5]. It dynamically constructs a multicast
tree by sharing common links among unicast
(reverse) paths from clients to the server. Flexcast
autonomously updates the optimal delivery tree when
recipients emerge or disappear, and maintains the
optimality of the tree regardless of user-host mobility
and/or changes in IP routing; the Flexcast protocol is
so simple that it is extremely scalable [6].

This paper describes experiments on stream deliv-
ery based on the Flexcast protocol. They were con-
ducted among three widely dispersed locations with
streaming servers and receivers located at each site.
We observed the response time and the influence of
communication delay jitter on Flexcast operation and
the packet-loss rate. The results show that, in the
absence of unusual congestion on any links, the Flex-
cast parameters offer sufficient margins, confirming
the robustness and stability of the Flexcast protocol.
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2. Flexcast protocol

2.1   Basic operations
This section describes the basic operations of the

Flexcast protocol. Flexcast has several advanced
functions such as load balancing among nodes and
host-mobility support, but here we focus on the basic
operations closely related to the experiment. 

Clients that want to receive multicast data send
“join” packets containing the paired information of
the server address and destination port. Legacy nodes
on the path between Flexcast nodes simply forward
the Flexcast packets (join packets and delivery pack-
ets, introduced later) since they are just IP-unicast
packets. When a join packet arrives at a Flexcast
node, the sender address written in the packet is reg-
istered with the routing table, called the delivery
table, maintained by the node if the table exists; oth-
erwise the table for the server is created before regis-
tration, and the node sends the server a join packet.
This joining operation propagates from the client
through intermediate nodes until the join packet
reaches the server or a node that already has the table.
The tables determine to which clients the multicast
data carried by the delivery packets, is to be deliv-
ered. This operation is based on a “keep-alive mech-
anism”. Each client periodically sends join packets as
long as it wants to receive multicast data. The par-
ent*1 of the client sends multicast data if a join pack-
et from the client arrives within some interval. (Such

a client is called “active”.) In other words, a client
that stops sending join packets expires, and no multi-
cast data is delivered to the client. The parent node
also continues to send join packets to the server of the
tree as long as it has at least one child still active. The
same keep-alive mechanism works between the node
and its parent. In this way, the keep-alive mechanism
starts from clients and passes through each parent and
child pair.

An example of the above operation is shown in Fig.
1. Clients C1, C2, and C3 periodically unicast join
packets to the server. These packets are routed as
ordinary unicast packets. Node B, which lies on two
routing paths, intercepts the packets and registers the
sender addresses, C1 and C2, in its delivery table, and
unicasts a join packet that lists B as the client, i.e., B
works as a proxy. If A lies on the path from B to S and
on the path from C3 to S, A picks up the join packets
from B and C3 and registers B and C3 in its table, and
unicasts a join packet that identifies A as the client to
server S. When S receives the join packet, it unicasts
delivery packets to client A. A copies the delivery
packets and sends them to B and C3 after referring to
the delivery table. In the same way, B sends the deliv-
ery packets to C1 and C2.

From the above, it is clear that delivery traces the
reverse of the unicast path from the client to the serv-
er. Intuitively, the reverse-paths between clients and
the server are agglomerated as much as possible by
the Flexcast nodes on the paths. Note that the Flexcast
protocol can work even if the reverse-paths differ
from the unicast paths from the server to clients, say,
the forward-paths. While forward-paths generally
yield higher stream delivery quality than reverse-
paths, forward-path-based tree construction often
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Fig. 1.   Basic operation of the Flexcast protocol.

*1 Following the usual tree terminology, for each node (including the
server and clients) of a multicast tree, we refer to the server- and
client-side neighbors as the parent and children of the node,
respectively.
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results in complicated or non-adaptable protocols.
Since IP networks are being optimized to support
peer-to-peer communication, it is reasonable to
assume that there will be little difference in quality
between forward- and reverse-paths. Thus the Flex-
cast protocol uses the reverse-path-based tree, which
yields scalability in terms of the number of nodes and
adaptability to IP-routing changes.

2.2   Tunneling functions
Servers and clients in Fig. 1 need to be able to run

the Flexcast protocol. In addition to these dedicated
severs and client, ordinary IP multicast servers and
clients can be used by introducing the Flexcast-IP
multicast bidirectional translator called the Flexcast
gateway. An example of Flexcast gateway use (G1
and G2) is shown in Fig. 2. G1 and G2 are connected
to the segment of an IP multicast server and IP multi-
cast clients, respectively. They create a tunnel
through which IP multicast packets from server S
pass to clients C. The tunnel can be a tree-shaped one
connecting the server-side gateway and multiple
client-side gateways because the tunnel itself is a
delivery tree of Flexcast. This achieves remarkable
efficiencies compared with the tunnel created
between IP multicast routers. Client-side gateway G2
watches IGMP (Internet Group Management Proto-
col) [7] membership reports sent by IP multicast
clients, extracts the flow ID (IP multicast address)
carried, and starts to send join packets to server-side
gateway G1 by referring to the address resolution

table, which maps the flow IDs to the corresponding
server-side gateways. When G1 receives join packets
requesting flow M, it picks up IP multicast packets of
M that are passing through the local segment, encap-
sulates them, and sends them as Flexcast delivery
packets. G2 extracts the original IP multicast packets
from the delivery packets and releases the IP multi-
cast packets to the local segment. Finally, IP multicast
clients get the IP multicast packets. G2 uses IGMP
query to periodically check if IP multicast clients
want to receive the flow and sends join packets only
while the clients are active. Thus, the Flexcast tunnels
are automatically created and removed under the con-
trol of the actions of the IP multicast clients.

3. Global streaming experiments

3.1   Environment
We conducted streaming experiments over NTT’s

experimental fiber-network connecting Japan and the
U.S.A., which is called GEMnet, and Internet2 [8] in
Sunnyvale, California. Streaming servers and clients
were located in NTT Yokosuka R&D Center (here-
after called Yokosuka), the University of Southern
California, Los Angeles (USC), and the University of
Illinois, Chicago (UIC). Yokosuka is connected to
GEMnet; USC and UIC are connected to Internet2.
Since GEMnet and Internet2 have a bidirectional
access point in Sunnyvale, USC and UIC can com-
municate with Yokosuka via Internet2 and GEMnet.
GEMnet has a bottleneck link between Japan and the
U.S.A. that has a constant bitrate (CBR) speed of 17
Mbit/s in each direction. This link was  also the bot-
tleneck of the whole network used in the experiments,
since Internet2 offers 10-Gbit/s links while the local
networks of USC and UIC have 1-Gbit/s links. 

The main purpose of the experiments was to verify
that the Flexcast protocol could handle widely sepa-
rated locations: The distances involved are: Yokosu-
ka to Chicago: 12,000 km, Yokosuka to Los Angeles:
9,000 km, and Chicago to Los Angeles: 4,000 km.
Figure 3 schematically shows the networks used. 

Each site had one or two Flexcast gateways, which
can duplicate contents in addition to encapsulating
and decapsulating them. IP-multicast servers and/or
clients were connected to the network in which gate-
ways were located. Since there were no Flexcast
nodes between the gateways, two streams of the same
contents passed through GEMnet when Yokosuka
served both Los Angeles and Chicago. This was not a
problem because the experiment was intended to ver-
ify the correct operation of the Flexcast protocol over
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Fig. 2.   Flexcast tunneling of IP-multicast packets.
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a very-wide-area network, not to measure its scala-
bility in terms of the number of clients.

We observed traffic at the three sites and checked
the quality of moving pictures delivered by the Flex-
cast protocol.

3.2   Parameters and metrics
We used implemented software-based Flexcast

gateways on personal computers (PCs) and two types
of commercial IP-multicast server/client systems as
shown in Table 1. The average bandwidth of MPEG2
streams was 7 Mbit/s and that of Windows Media ver.
7 was 625 kbit/s. 

We obtained traffic data by using TCPDUMP and
the packet-loss rate by serially numbering packets at
server-side gateways and checking the packet-num-
ber of each packet received at client-side gateways.
We measured the following metrics. 

• Response time: Interval between the time when
the client-side gateway sent the first join packet
to the time when the gateway received the first

delivery packet. 
• Join-packet sending-interval: Time gap between

two consecutive join packets, initially set to 1.0 s. 
• Join-packet arrival-interval: Time gap between

two consecutive join packets as received. 
• Packet-loss rate: Percentage of packets lost 

3.3   Scenarios
The experiments were conducted using the follow-

ing scenarios: 
• Scenario A (Fig. 4): MPEG2 live streams were

delivered to Chicago and Yokosuka from Los
Angeles. Only 7.5-Mbit/s traffic flowed through
the Japan-U.S. bottleneck link of 17 Mbit/s in
each direction. This scenario assessed the con-
gestion-free situation.

• Scenario B (Fig. 5): Three sets of contents were
simultaneously delivered: MPEG2 live streams
were delivered to Chicago and Los Angeles from
Yokosuka, another MPEG2 live stream to Yoko-
suka from Los Angeles, and Windows Media live
streams to Chicago and Los Angeles from Yoko-
suka. Thus, over 16 Mbit/s of traffic had to pass
from Japan to the U.S., while 7.5 Mbit/s of traffic
passed from the U.S. to Japan. This scenario cor-
responded to a congested situation.
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Fig. 3.   Schematic view of the network.

1

System

2

MPEG2 7 M

Windows Media ver. 7 625 k

Codec type Average bandwidth (bit/s)

Table 1.   Commercial IP-multicast servers/client systems
used in the experiments.
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3.4   Data analysis (scenario A)
The measured data is summarized in Table 2. The

standard deviation (stdev.) of the join-packet arrival-
interval was very small (below 10 ms) and was not

significantly different from the join-packet sending-
interval. This confirms the good stability of the Flex-
cast protocol, which allows the intervals of consecu-
tive join packets to be up to 2 s in the current setting.
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Fig. 4.   Streaming paths in scenario A.
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The packet-loss rate of 5% may be due to the bursti-
ness of MPEG2, whose peak rate exceeded the band-
width of the bottleneck link. 

The round-trip time (RTT) between Los Angeles
and Yokosuka was 128 ms. This RTT is included in
the response time of 136 ms. The delay at the Yoko-
suka gateway, 136–128=8 ms, is the sum of the wait-
ing-time of IP multicast packets and processing time. 

3.5   Data analysis (scenario B)
The traffic rate through the bottleneck link exceed-

ed 16 Mbit/s in the Japan-to-U.S. direction. Though
the bandwidth of GEMnet is 17 Mbit/s (CBR), this
situation is critical because streaming traffic is very
bursty. We can see the influence of the congestion of
the bottleneck link on both join and delivery packets. 

To examine the influence of congestion on the join
packets, we observed the join packets from Yokosuka
because the congestion occurred in the Japan-to-U.S.
direction. The measured data is summarized in Table
3. The standard deviation of the join-packet arrival-

interval is extremely large compared to that of the
join-packet sending-interval. This is due to the com-
munication delay jitter caused by the congestion. Fig-
ure 6 plots the join-packet sending/arriving intervals.
The largest and second-largest values of the join-
packet arrival-interval were around 3 s and 2 s,
respectively, which means that some join packets
may have been lost. The packet-loss rate in Table 3 is
the loss-rate of delivery packets from Los Angeles to
Yokosuka. The loss-rate was much lower than that in
the opposite direction, i.e., over 15%. 

4. Conclusion

This paper described streaming experiments con-
ducted to assess the robustness and stability of the
Flexcast protocol when used to deliver streams to
widely dispersed locations. We set streaming servers
and clients in three locations: Yokosuka in Japan and
Chicago and Los Angeles in the U.S. Prior to the
experiments, our analysis indicated that the jitter of
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Table 2.   Measured data in scenario A.
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Table 3.   Measured data in scenario B.
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communication delay would probably have a consid-
erable influence on Flexcast performance, but the
results show that the jitter was much smaller than
expected and that the Flexcast parameters offer suffi-
cient margin if no links experience unusual conges-
tion. Good picture quality and quick response time
were also confirmed in the experiments. We intend to
perform stream delivery experiments among many
locations to verify the scalability of the Flexcast pro-
tocol in terms of delivery tree size.
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