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1.   Introduction 

The spread of cellular phones and personal mobile
terminals is creating an environment of ubiquitous
wireless networks. In the future ubiquitous services,
location determination will be a key technology. In
the ubiquitous era, wireless devices will be attached
to every object and all objects will be connected to the
network. It will be possible to determine an object’s
location from data from these wireless devices.
Therefore, applications using location determination
systems have begun to attract a great deal of interest
[1] and the importance of being able to correctly
determine the location of an object or person has
grown. In most cases, numerical coordinates are used
to represent the location of objects or persons. In this
paper, we suppose that an object or a person with a
wireless interface represents an object, and that fixed
base stations (BSs) can communicate with that
object. Since the location determination techniques
are to be used for various purposes and under various
conditions, both outdoors and indoors, each tech-
nique must be well-matched to the system in which it
is to be used. These techniques use multiple distance
measurements between the object and BS (for exam-

ple, a global positioning system (GPS) satellite or the
BS of a cellular system). The most popular technique
for outdoor location determination uses GPS and is
commonly employed in car navigation systems [2].
This technique is based on the time of arrival (TOA)
of a signal from the GPS satellite and calculates the
distance between the user terminal and the satellite to
find the coordinates of the user station. A network-
assisted GPS technique has been proposed by Snap-
Track, Inc. as a means of evaluating the accuracy of
GPS-based detection [3]. The user station of this sys-
tem communicates with a stationary server on the
ground and revises the arrival time from the GPS. In
this manner, the user station can obtain more accurate
coordinates and the usage area can be expanded to
include areas between tall buildings, or even indoors
if the user is next to a window. The Cricket Location
Support System is an indoor location system envi-
sioned by MIT’s Project Oxygen [1]. This system
uses a combination of RF (radio frequency) and ultra-
sound technologies to provide a location-support ser-
vice to users and applications using an RF signal
operating in the 418-MHz amplitude modulation
band. With each RF advertisement, the beacon trans-
mits a concurrent ultrasonic pulse. Japanese PHS
(1.9-GHz-band personal handy-phone system) carri-
ers provide indoor location services to user stations
by using the received intensity of signals from BSs on
the premises [4]. Furthermore, techniques that have
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been tuned for high accuracy have been reported.
These include a positioning method that searches
within a limited area for a user station assumed to be
moving at walking speed [5] and one that calculates
the user position by using only high-confidence data
while ignoring low-confidence data from distant BSs
[6]. TOA requires fast time resolution of less than a
nanosecond to calculate the distance with 1-m accu-
racy indoors. We focused on improving the accuracy
of indoor location determination based on the inten-
sity of a signal received by an object from a BS,
where the object cannot receive a GPS signal.

The conventional methods using signal intensity
calculate the numerical coordinates of the object
using an equation that predicts the distance based on
the intensity of the signal from the BS received by the
object. However, it is usually impossible to find the
parameters of the equation for the correct propagation
environment because of the presence of objects that
shield or reflect radio waves. 

In this paper, we propose a method that resolves
this problem by combining the following two
schemes. First, we propose a new paradigm for rep-
resenting the location of an object. For this study, we
must first define the difference between ‘positioning’
and ‘locating’. Our method is a ‘locating’ method and
represents the location of the object by using the
name or designation of the locality, and not by using
the coordinates of either the object or BS like con-
ventional ‘positioning’ methods. Second, we devel-
oped a new locating method that uses a learning func-
tion in conjunction with data obtained in advance.
The conventional method that obtains data in advance
was presented in [9]. However, this method must
assign coordinate positions to all the obtained data.
Therefore, gathering data was troublesome. Our
method resolves this problem by combining the rep-
resentation method using the location name with a
location determination method employing a fuzzy
learning strategy. A field test showed that it can deter-
mine the location of the object more accurately than
conventional methods, such as the least-squares
method (LSM), which is a positioning algorithm. 

2.   Location representations

2.1   Location representation method based on
coordinates

We suppose that the object to be located is in a
building and that the building has many BSs for wire-
less communications such as wireless LAN access
points, PHS BSs, or RFID (radio frequency identifi-

cation) tag receivers. We also assume that the object
can link to a BS. 

In most location representation methods, numerical
coordinates are used to represent the location of the
object. The coordinates are usually two-dimensional
(horizontal plane), but may sometimes be three-
dimensional (including height). In practice, the posi-
tion of the object is calculated using a positioning
algorithm and visually represented on a digital map.
In response to requests from applications, the results
are matched against a database that stores the names
and coordinates of landmarks. When the object is a
user’s terminal, this database information is then con-
veniently provided to the terminal, for example,
“there is an entrance nearby”. Thus, it requires two
steps for the user to receive the information he or she
needs: one process for calculating the coordinates
and another for matching the location to a name in the
database.

For services utilizing the location determination
capability, the location name (e.g., the building’s
room number) is more useful to the user than the
exact numerical coordinates. Moreover, even if the
exact coordinates are obtained, this information is
worthless if a mistake is made in converting them and
you end up with the wrong room number.

2.2   Proposed representation method using
locality name

We propose a new method for representing an
object’s location, which uses the designation of the
localized area (locality name). It treats the signal
intensities from the BSs to the object as inputs and
treats the locality name as the output. It applies the
learning algorithm described in Section 3.2 to train-
ing data gathered in advance by, for example, walking
around in the entire target area with a measuring ter-
minal to obtain the signal intensities. The signal
intensities are allocated as input. At the same time,
the locality name is entered with a keyboard and allo-
cated as output. Then the learning algorithm learns all
the obtained input/output pairs in the entire target
area directly. In the operation of the location determi-
nation system, the input data (signal intensities) are
obtained and the filter generated by learning calcu-
lates the locality name. This representation method
has two merits. One is that it does not need to convert
the coordinates into a locality name, so it takes only
one step to obtain the location. The other is that
nobody needs to know the coordinates of the BSs.
Namely the person who installs them does not need to
input accurate coordinates for them. This method is
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suitable for navigation systems using small user ter-
minals that have no screen and that provide only
audio navigation instructions, because it outputs only
location names.

3.   Location determination algorithms

Here, we describe the conventional positioning
algorithm and the proposed algorithm, assuming that
these algorithms are used in a system comprising
wireless BSs and user stations. We suppose that a BS
broadcasts a signal such as a beacon periodically and
a user station can measure the intensities of signals
received from the BSs.

3.1   Conventional position determination
algorithm using LSM

LSM is often used for position determination using
the intensities of signals received from multiple wire-
less BSs. In this method, the distance from each BS to
the user station is estimated by assuming that the
attenuation of signal intensity is inversely proportion-
al to the distance. Assuming that the user station is in
a typical office space and uses a 2.4-GHz wireless
interface, the function used to calculate the received
intensity is expressed by Eq. (1) in logarithmic form
(see ITU-R Recommendation P-1238-1 [7]), where
the propagation constant is 3.0.

Lk = 40.9 + 30 · log(dk), (1)

where Lk is the propagation loss, dk is the propagation
distance, and 40.9 is the coefficient. 

Position determination works on the principle of
triangulation. The position of the user station can be
calculated using three or more distances on a two-
dimensional plane. First, dk is acquired using Eq. (1)
and the known positions of the BSs (xk, yk). Then,
LSM is applied. This is a practical method for deriv-
ing the optimum parameters; the minimum value of
the square error is found by changing the parameters.
In position determination, the position (X, Y) of the
user station is given by the minimum value of Eq. (2).

(2)

The LSM method and similar methods that determine
the user position by using distances calculated from
received intensities have two problems.

1. They require information concerning the propa-
gation environment in the target areas, but the
correct propagation environment is usually
impossible to ascertain from one parameter,
because there are usually objects that shield or
reflect radio waves in the area, especially indoors
(Fig. 1).

2. The error in the distance estimated using Eq. (1)
is large in areas far from the BSs, because the
distance attenuation expressed in logarithmic
form is small in such an area.
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Fig. 1.   Relationship between signal intensity and distance from base station in an office.
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3.2   Proposed location determination method
using a learning function

In this paper, for indoor location determination, we
propose a fuzzy strategy using a learning function as
a solution to the above problems. First, the whole area
is divided into several small zones or localized areas
(e.g., Room A and Room B), which are used to indi-
cate the location of the user. 

(1) Acquiring input and output data
The proposed method uses the following data sets

as training data.
a) Input: Intensities of signals received from BSs at

a particular position.
b) Output: Designation of the localized area for a

particular set of input data.
The input/output pairs are obtained as training data

for the entire target area. The proposed method learns
these pairs and makes a rule for deciding the output
for new input data. The rule gives the designation of
the localized area as output data. Figure 2 shows an
example of obtaining data sets for learning in the four
localized areas (Rooms A–D), including three BSs.
The data for N measuring points are obtained, and a
room designation is assigned to each point’s data as
output.

(2) Learning process using LVQ algorithm 
The proposed method uses the LVQ algorithm to

learn the above training data sets. LVQ is a super-
vised learning algorithm for neural networks and it is
used commonly in the field of image analysis. In this

algorithm, a set of input elements is considered to be
a vector. When S BSs and N measuring points are
used, N input vectors are plotted in the feature space,
and the value of each vector element is used as an axis
of S-dimensional feature space. Reference vectors are
plotted in the feature space for quantizing all measur-
ing points. Figure 3 shows an example of plotting the
input vectors and the reference vectors in a 3-dimen-
sional feature space. Each reference vector represents
a room in the feature space, and the locations of the
reference vectors are moved within the feature space
according to the learning rule. This rule compares the
input vectors with reference vectors and moves the
reference vectors to more suitable positions to repre-
sent the rooms. Figure 4 shows an example of the ref-
erence vector activity using this learning rule. It can
be proved that LVQ can establish optimal borders for
logically discriminating each localized area (rooms in
this case), where these lines are called Bayes dis-
crimination [8]. The flow diagram in Fig. 5 describes
the LVQ learning process in the proposed method.

After the process of learning, the generated rule is
used to determine the location. When the user station
receives new signals from BSs, the received signal
intensities are used to construct the input vector in the
feature space. This new input vector searches for the
reference vector that minimizes the square norm
between the input vector and the reference vector.
Then, the output of the reference vector, which is the
locality name (e.g., room name), is linked to the new

Fig. 2.   Example of obtaining data sets for learning.
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set of received intensities.
In the conventional non-linear optimizing method,

it is necessary to measure numerical coordinates of
positions throughout the entire area using a pulse
counter or optical camera in advance. In contrast, in
the proposed method, the BS coordinates do not need
to be recorded (Fig. 6). Furthermore, information
about the propagation environment is automatically
projected in the information of the reference vectors. 

This algorithm can also be used for other architec-
tures. For example, in an active RFID tag system, the
user (or object) has a tag that broadcasts its ID code,
and receivers that can measure the intensity from the
tag are established as base points. The server collects
the data and calculates the location of the tag. Exper-
imental results using active RFID tags are given in
[10].
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Fig. 3.   Example of plotting input vectors and reference vectors in 3-dimensional feature space.

Fig. 4.   Example of reference vector activity using the proposed learning rule.
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All input vectors are plotted in S-dimensional feature space.

N: Number of input vectors.
Vn: The n-th input vector.
S: Dimension of feature space = number of base stations.
Fig. 3 is example of 3-dimensional space in Fig. 1.

M: Number of reference vectors.
     N >> M > number of rooms.
Wm: The m-th reference vector.

Input/output of reference vector is defined randomly.
Inputs are intensity values from base stations,
and the output is the room designation.
Figure 3 is an example of plotting reference vectors.

I: Defined iteration steps.
i: The i-th iteration step.

Is output of Wm equal to output of Vn ?

Moving close to Vm Moving away from Vm

Yes
No

a1, a2: Coefficients for convergence. Decrease according to number of iterations.

In Fig. 4, Vm1 finds Wn1. The output of Wn1 is the same as that of Vm1, so Wn1 is
moved to Vm1. In contrast, the output of Wn2 found by Vm2 is not the same as the
output of Vm2. Therefore, Wn2 moves away from Vm2.

Define the number of reference vectors

Define the iteration steps of the algorithm

Iterate following the flow from 0 to I

Iterate following the flow from 1 to N 

Determine new Wm(i+1).

End of learning process

Define the initial input/output of the reference vectors,
and plot them in the feature space

Search for reference vector Wm that minimizes the square norm
between Wm to Vn in the feature space.

Wm(i+1) = Wm(i) - a1(Wn(i) - Vm) Wm(i+1) = Wm(i) + a2(Wn(i) - Vm) 

Fig. 5.   Flow of learning process by LVQ.
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4.   Experiment

4.1   Obtaining input (signal
intensity) and output
(location name) data

We obtained experimental data in
an actual office, and compared the
locations calculated using the pro-
posed  me thod  aga in s t  t hose
obtained using the conventional
LSM method. Table 1 shows the
conditions for obtaining the data,
and Fig. 7 shows the layout of the
office. 

A frequency hopping wireless
LAN conforming to IEEE 802.11
was used as the wireless interface.
Signals with the station ID were
broadcast from each BS, and the
received signal intensities were
obtained at all measuring points. A
time period averaged over 0.5 to 20
s was used for the intensities. The
room was divided into five zones
(areas A to E in Fig. 7). We obtained
1000 data sets per measuring point
from 300 measurement points. The
data were obtained over several days
because there were fluctuations in
the signal intensity.

4.2   Learning process specifications
Table 2 gives the specifications of the learning

process of the proposed method. The training data for

learning contained not only the intensities, but also
the actual localized areas. We obtained 10 training
data sets at 300 measuring points for a total of 3000

Fig. 6.   Difference between conventional and proposed methods of gathering data.
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points. The number of reference vectors was 40, and
the reference vectors scattered in the feature space
filled in 3000 input vectors of the training data. The
learning involved 100,000 iteration steps. 

4.3   Conditions for the conventional method 
The conditions of the LSM method were as follows.

The propagation constant of Eq. (1) was 1.5. This
coefficient was defined using the received intensity
measured in advance in the experimental room. We
searched for F(X, Y) in Eq. (2) at intervals of 0.5 m
throughout the experimental room. For comparison
with the proposed method, the coordinate positions of
the LSM results were changed to the designations of
the localized areas. 

5.   Experimental results

We compared the results for the proposed method
with those for the conventional method using the suc-
cess rate to determine whether or not the methods
could correctly indicate the correct localized area.
The answers provided by the
LSM method were converted
from coordinates into locali-
ty names (areas A to E in
Fig. 7) and judged.

Figure 8 shows the suc-
cess rate versus the averag-
ing time of the received
intensities for a wireless
LAN. For both methods, as
time elapsed, the success rate
increased until the averaging
time was longer than 5 s.
This indicates that it takes 5 s
to obtain the correct answer
with either method. The suc-
cess rate of the proposed
method was higher than that
for the conventional method
for all averaging times. The
upper limit of the success
rate for the proposed method
was approximately 70%,
whereas the upper limit of

the conventional method was only approximately
60%. 

The distributions of the success rate for the experi-
mental room are shown for the conventional and pro-
posed methods in Figs. 9 and 10, respectively. The
areas where the success rate was lower than 70% are
shown in red. In Areas A, B, C, and E, the success
rates of both methods were almost equal. On the other
hand, in Area D, there was a large difference between
them. In the whole of Area D, the success rate of the

3000

40

100,000

Training data sets

Reference vectors

Iteration steps

Table 2.   Specifications of proposed learning process.

Fig. 8.   Success rate versus averaging time of received
intensity.

Fig. 9.   Distribution of success rate using conventional method in experimental room.
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proposed method was higher than 70%, whereas that
of the conventional method was lower than 70%. This
is because, in areas that contain BSs, the dispersions
of the received intensity are small and the intensity
attenuation with distance is large, so the propagation
environment can be easily estimated. Thus, the con-
ventional method can easily detect a user station near
a BS. However, in areas that do not include a BS and
in ones that are far from a BS, such as Area D, Eq. (1)
in the conventional method does not accurately
model the actual propagation behavior, so the success
rate is lower. Our method can usually detect the user
correctly in Area D, because it characterizes Area D
using the reference vectors as “an area without a BS”
in the feature space. Figure 11 shows the success rate
versus the averaging time of the received intensities
in Area D. We can see that the upper limits are 75%
for the proposed method and 25% for the convention-
al method.

We obtained similar results using active RFID tags.
Figures 12 and 13 show the
distribution of the success
rate for the conventional
and proposed  methods
us ing  RFID  t ags .  The
experimental conditions
were as follows: a 12 × 9 m2

room was logically divided
into four zones, five tag
receivers were attached to
the ceiling, and the broad-
casting interval for tags was
2 s. The results show that
the success rate of the pro-
posed method was approxi-
mately 90% and that of the
conventional method was
approximately 40%. The
conventional method used a
propagation constant in
Areas C and D, but the con-
stant was not suitable for
Area A or B, so the success
rate was low in these areas.
On the other hand, the suc-
cess rate of the proposed
method was high for all
areas, because the reference
vectors expressed the char-
acteristics of the propaga-
t ion  environment .  The
attenuation of the signal

intensity with distance when using the RFID tags was
greater than that using the 802.11 wireless LAN, and
there was little signal reflection from RFID tags near

Fig. 12.   Distribution of success rate using conventional method with RFID tags.
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the walls. Therefore, the success rate of the proposed
method using RFID tags was higher than that using
the 802.11 wireless LAN.

6.   Conclusion

We described a location determination method
based on Learning Vector Quantization using the sig-
nal intensities from base stations. The method
employs a unique concept combining the following
two schemes: 1) a location representation method
using the locality name and 2) a learning function
based on Learning Vector Quantization algorithms.
An experiment conducted in an office showed the
superior success rate of this method, 70% for a wire-
less LAN and 90% for wireless active tags, compared
with 60% and 40%, respectively, for the convention-
al method. This new location determination method
located the target object more accurately than the
conventional method throughout the office. It was
especially better in areas that had no base station.
This method is effective for indoor human navigation
or object detection systems. In the future, we plan to
improve the method of obtaining data and investigate
user-friendly location determination systems.
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