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1.   Introduction

High-energy-density lithium ion batteries are
expected to be employed as energy storage devices
for uninterruptible power supplies for telecommuni-
cations, load leveling equipment, and electric vehi-
cles. This application requires a large lithium ion bat-
tery with a high energy. However, it is generally dif-
ficult to ensure the safety of such batteries, which
must not catch fire or burst when the battery experi-
ences problems such as a short circuit, overcharging,
a high temperature, or a crushing force.

Various organic solvent-based solutions have been
widely marketed for use as lithium ion battery elec-
trolytes, including propylene carbonate, ethylene car-
bonate, dimethyl carbonate, ethylmethyl carbonate,
diethyl carbonate, and γ-butyrolactone as the solvent.
Electrolytes with these organic solvents provide the
following features: a high lithium salt solubility of

1.0 to 3.0 mol dm–3, high specific conductivity over a
wide temperature range such as –20 to 60°C, a wide
electrochemical window of 0 to over 5.0 V vs. Li/Li+,
and good chemical stability against both the cathode
and anode. 

However, these organic solvents are flammable and
volatile, which makes the batteries that employ them
a safety risk. Therefore, various measures have been
taken to make lithium ion batteries safe. However,
year by year the energy density has increased, and
larger batteries are being developed. This raises seri-
ous concerns about the future safety of this type of
battery.

One promising solution is to use a nonflammable,
nonvolatile electrolyte since this would eliminate
most of the flammable material from the battery. This
nonflammability is effective in preventing batteries
from catching fire, and a nonvolatile electrolyte pre-
vents batteries from bursting. One candidate for a
nonflammable electrolyte solvent is a room-tempera-
ture molten salt (ionic liquid).

Ionic liquids consist of a cation and an anion, and
the total charge of the compound is neutral. They gen-
erally have a number of features including nonflam-
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mability, nonvolatility, a relatively wide electro-
chemical window, a high specific conductivity, and
good chemical stability. Moreover, they are liquid at
about room temperature. Therefore, ionic liquids are
promising materials for both battery electrolytes and
other chemical devices.

Figure 1 shows examples of cations and anions for
ionic liquids. Butyl pyridinium (BP) cations are 
suitable cations for molten salts, but they are not very
stable and have a narrow electrochemical window.
Trimethylpropylammonium (TMPA) cations and N-
methylpiperidinium (PP13) cations are stable and can
be used as the electrolyte of lithium ion batteries [1].
However, their specific conductivity is not very high
and only a limited number of counter anions can be
used with them to form ionic liquids. 1-ethyl-3-
methylimidazolium cations (EMI+) are compact 
and very stable and have a structure that can be mod-
ified. Cl– with AlCl3, BF4

–, PF6
–, CF3SO3

– and
N(CF3SO2)2

– are examples of anions for ionic liq-
uids.

Initially, ionic liquids with imidazolium and pyri-
dinium cations were widely studied. For example, 1-
ethyl-3-methylimidazolium chloride (EMI-Cl) with
AlCl3 provides high specific conductivity, relatively
low viscosity, and a relatively wide electrochemical
window [2]. However, this salt is sensitive to air and
moisture, so it must be handled carefully. 

Then it was reported that EMI+ with other anions

(PF6
–, CF3SO3

–, and BF4
–) shows good stability

against air and moisture [3]. However, the reduction
potential of these EMI salts is about 1 V vs. Li/Li+,
which is insufficient for lithium ion battery applica-
tions. It is thought that the reduction potential of these
salts depends mainly on EMI+ [4]. There have been
some reports of lithium cell applications using imida-
zolium salts with high potential anodes [5]-[8] or
electrolyte additives [9], [10]. If we can obtain an
imidazolium salt with no decomposition within the
potential range of a lithium ion cell, we believe that
an electrolyte with this salt could enhance the safety
of high-energy lithium ion cells.

In this study, we modified the cation structure of 1-
ethyl-3-methylimidazolium tetrafluoroborate (EMI-
BF4) to lower its reduction potential for use in lithium
ion batteries.

2.   Experimental

EMI-BF4 (Aldrich) was used as received. EMI-BF4

and other imidazolium salts were dried in vacuo at
80°C for 24 hrs. All salt preparation was performed in
an argon-filled glove box. 1-ethyl-2,3,4,5-tetra-
methylimidazolium tetrafluoroborate (ETMI-BF4)
and 1,2-diethyl-3,4(5)-dimethylimidazolium tetraflu-
oroborate (DEDMI-BF4), which were synthesized in
this study for the first time, were identified by H1-
NMR (JEOL JNM-ECX400), mass spectroscopy
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Fig. 1.   Cations and anions for ionic liquids.
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(JEOL JMS-700), high-throughput liquid chromatog-
raphy, HPLC (Shimadzu LC-2010), and elemental
analysis. The melting points of these salts were deter-
mined by observation.

The cell we used for the potential measurement
(Fig. 2) had three electrodes: a glassy carbon working
electrode, a lithium metal reference electrode, and a
lithium metal counter electrode. Measurements were
carried out using the linear potential sweep method
with a potentiostat (BioLogic, Macpile II) at 80°C.
The voltage range with respect to Li/Li+ was from 0
to 5 V, and the sweep speed was 0.1 mV s–1.

We measured the specific conductivity of each
electrolyte at 1 kHz by using an LCR bridge (Gen-
Rad, 1658 RLC digibridge) with a cell (Yanako, I-
type cell) in a thermostat (ESPEC, SU-240) (Fig. 3).

3.   Results and discussion

3.1   Drawback of EMI-BF4 and improvement
strategy 

The potential-current profile of EMI-BF4 with a
three-electrode cell is shown in Fig. 4. The reduction
current of EMI-BF4 appeared at around 1 V vs.
Li/Li+, which is the same as that in a previous report
[4]. This reduction decomposition of EMI-BF4 was
due to imidazolium cations (EMI+) [4], and it implies

that we cannot use conventional graphite anode mate-
rial with a redox potential close to 0 V vs. Li/Li+ in
this salt. We believe this high reduction potential is
caused by the high charge density of the cations and
that reducing this charge density will lead to a low
reduction potential. 

The imidazolium cation itself has one positive
charge, and the position of the highest charge density
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W.E.: working electrode, C.E.: counter-electrode, 
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Fig. 2.   Electrochemical cell for electrochemical window
evaluation.
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Fig. 3.   Electrochemical cell for specific conductivity
measurement.
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is believed to be between two nitrogens. Figure 5
shows the structures of modified imidazolium cations
designed by using the above hypothesis. Here EMI+

is at R1=C2H5, R3=CH3, R2=R4=R5=H. We substi-
tuted the electron donor R2 at the 2nd carbon. We
also substituted the electron donors R4 and R5 at the
4th and 5th carbons. These substitutions were expect-
ed to reduce the peak positive charge density and also
to lessen  the reactivity of EMI+ with electrons due to
steric hindrance. We selected an alkyl group as an
electron donor substituent.

3.2   Modified imidazolium salt I, ETMI-BF4

We examined the possibility of synthesizing alky-

lated EMI+ and selected a methyl group, in this case
the smallest alkyl group, for the electron donors R2,
R4, and R5. We then synthesized 1-ethyl-2,3,4,5-
tetramethylimidazolium tetrafluoroborate (ETMI-
BF4). Figure 6 shows the ETMI-BF4 synthesis
scheme. Ethyl bromide was reacted with 1,2,4,5-
tetramethyl imidazole and the anion was changed
from Br– to BF4

–. ETMI-BF4 was identified by H1-
NMR spectrometry, mass spectrometry, elemental
analysis, and HPLC.

Table 1 shows the physical properties of various
imidazolium salts. The melting point of ETMI-BF4

was observed to be 78–80°C. This is higher than that
of EMI-BF4 and similar to that of EMI-Cl. ETMI-BF4
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Fig. 5.   Structure of modified EMI cations.

ETMI-BF4: 1-ethyl-2, 3, 4, 5-tetramethylimidazolium tetrafluoroborate
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and EMI-BF4 show almost the same symmetry, so
this trend is mainly caused by the volume of ETMI-
BF4 being larger than that of EMI-BF4.

Figure 7 shows the electrochemical profile of the
current and potential for ETMI-BF4 at 80°C. The cur-
rent around 1 V vs. Li/Li+, which was observed in
EMI-BF4 (Fig. 4), was not present in ETMI-BF4. In
addition, there was no decomposition of ETMI-BF4

from 0 to 5 V vs. Li/Li+; that is, ETMI-BF4 is stable
within the electrochemical potential range of lithium
ion batteries. Consequently, as we expected, alkylat-
ing EMI+ gave it a much lower electrochemical
reduction potential than EMI+.

The specific conductivities of ETMI-BF4 and EMI-
BF4 are shown in Fig. 8. The specific conductivity of
ETMI-BF4 at 20°C was 0.12 mS cm–1 and this value
is much lower than that of EMI-BF4. Although
ETMI-BF4 has a high melting point of 78–80°C,
ETMI-BF4 is liquid down to 10°C as a result of super-
cooling. A similar phenomenon was observed for
EMI-BF4: the melting point  is 15°C and the liquid
state was maintained down to –30°C as a result of

supercooling.
Thus, our investigation of the alkylation of imida-

zolium salts as a way of boosting the performance of
EMI-BF4 showed that alkylation of the cations
improves the stability when the electrochemical
potential is low and provides a wide enough electro-
chemical window for use in Li-ion batteries. Howev-
er, ETMI-BF4 exhibits a high melting point and a low
specific conductivity, so both these characteristics
must be improved before it can be used as a lithium
ion battery electrolyte solvent.

3.3   Modified imidazolium salt II, DEDMI-BF4

We redesigned the structure of the imidazolium
cations and investigated 1,2-diethyl-3,4(5)-
dimethylimidazolium tetrafluoroborate (DEDMI-
BF4). DEDMI-BF4 is less symmetrical than ETMI-
BF4 and is a mixture of 4- and 5-methyl isomers.
Asymmetric molecules tend to have a lower melting
point than symmetric compounds with the same for-
mula weight. Moreover, the solidification point of the
mixture is lower than that of any of the original com-
ponents. Therefore, we expected the melting point to
be lower than that of ETMI-BF4.

Figure 9 shows the DEDMI-BF4 synthesis scheme.
2-ethyl-4(5)-dimethyl imidazole was reacted with
ethyl bromide and then reacted with methyl iodide.
Finally, I– was replaced by BF4

–. DEDMI-BF4 was
identified by H1-NMR spectrometry, mass spectrom-
etry, elemental analysis, and HPLC.

Abbreviation

ETMI-BF4

DEDMI-BF4

EMI-BF4

EMI-Cl

EMI-PF6 

Anion

BF4
–

BF4
–

BF4
–

Cl–

PF6
– 

Formula weight

240.05

240.05

197.97

146.62

256.13

Melting point (°C)

78-80

19-20

15

77-79

58-62

Table 1.   Physical properties of imidazolium salts.
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The melting point of DEDMI-BF4 was observed to
be 19–20°C, as shown in Table 1. As we expected,
this is much lower than that of ETMI-BF4 and close
to that of EMI-BF4. Therefore, we succeeded in
obtaining an imidazolium salt with a room-tempera-
ture melting point.

The electrochemical profile of the current and
potential for DEDMI-BF4 at 80°C is shown in Fig.
10. The profile is almost flat, similar to that for
ETMI-BF4 (Fig. 7). There was no decomposition
when the potential was between 0 and 5 V. Therefore,

DEDMI-BF4 provides a sufficiently wide electro-
chemical window for use in Li-ion batteries.

Figure 11 shows how the specific conductivity var-
ied with temperature. DEDMI-BF4 had a higher spe-
cific conductivity of 1.44 mS cm–1 at 20°C than
ETMI-BF4. DEDMI-BF4 was in the liquid state, even
below the melting point. It also exhibited supercool-
ing, with the limit being –10°C.

DEDMI-BF4 still does not meet the requirements

DEDMI-BF4

DEDMI-BF4: 1,2-diethyl-3,4(5)-dimethylimidazolium tetrafluoroborate
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Fig. 9.   Synthesis scheme for DEDMI-BF4.
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for a lithium ion cell electrolyte solvent. We should
expand the temperature range of its liquid state to at
least below –20°C, select a suitable lithium salt and
electrolyte composition, and then evaluate the lithi-
um cell performance and cell safety with this type of
electrolyte.

4.   Conclusion

We found that alkylating EMI+ is an effective way
to improve its stability when the electrochemical
potential is low. It also provides a sufficiently wide
electrochemical window for use in Li-ion batteries.
DEDMI-BF4 retained its liquid state down to –10°C
and has a good specific conductivity at room temper-
ature. However, we must further improve the perfor-
mance of DEDMI-BF4 for use in lithium ion cells.
We firmly believe that ionic liquid electrolytes will
be used as nonflammable electrolytes for lithium ion
cells, which will greatly improve their safety.
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