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1.   Introduction

On the Internet, data (representing text, voice, and
movies) transferring between applications is split into
packets that each has a header including a source and
a destination address. A packet from a source travels
to a destination via routers. A router along the path
determines the next-hop router for incoming packets
based on the destination address of the packet and its
own routing table. Unlike in the traditional telephone
network, in the Internet, packets from sources are
multiplexed at routers; i.e., a packet from one source
may be located between packets from others. 

When the number of injected packets exceeds the
capacity of the network, packets are temporarily
stored at a buffer in a router, and in the worse case,
they are dropped because the router’s buffer has a
finite size. Such a state is called congestion. Consid-
ering that a huge number of packets from many users
are involved in the generation of congestion, a macro-
scopic view is better for understanding the dynamics
of Internet traffic than a view focusing on the behav-
ior of individual users’ packets. 

There have been many studies on statistical charac-
terization of Internet traffic [1]. Historically, Internet
traffic was characterized by a Poisson model, mean-
ing that the mean and variance of the traffic are
described by a single parameter. One of the important
properties of the Poisson model is its memory-less
nature, i.e., the current value of traffic volume is inde-
pendent of past values. However, it was found that
the fluctuation of traffic volume in the Internet is well
modeled by self-similarity, deviating clearly from the
Poisson model [2], [3]. The self-similarity is a scale-
invariant property in which a burst still remains when
the observed time scale changes. Comparing real traf-
fic with a Poisson time series and a self-similar sur-
rogate time series, it is visually apparent that real traf-
fic has scale-invariance and is closer to a self-similar
time series than to a Poisson one, as shown in Fig. 1.
Theoretically, the power spectrum of a self-similar
time series is characterized by a power law S( f )∝ f –β

for 0 < β ≤ 1, where f is frequency and β is called the
scaling exponent. On the other hand, the power spec-
trum of Poisson traffic is white noise, corresponding
to β = 0. Thus, a self-similar time series has long-
range correlation, meaning that the current value
strongly depends on past values, though a Poisson
time series is memory-less. 
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2.   Phase transition phenomena in Internet traffic

As I have explained, the temporal variation of net-
work traffic exhibits self-similarity. However, we
may ask a question: Is the self-similarity observable
independent of the status of the network? In other
words, when the network is less-congested or highly
congested, does the traffic still show long-range cor-
relation?

To answer this question, the rest of this section
reveals that the traffic fluctuation is characterized by
phase transition phenomena between non-congested
and congested phases [4]. Phase transition phenome-
na are widely known in statistical physics and are
defined as phenomena where a macroscopic parame-
ter (order parameter) of the system changes greatly
when a microscopic parameter (control parameter)
approaches an uncertain critical point [5]. One well
known example is that a magnet loses its magnetic
power at the critical temperature. One of the most

important properties of the phase transition is that
self-similarity appears at the critical point. In Internet
traffic, the control parameter corresponds to the
aggregated traffic density (i.e., level of congestion).
When the traffic density is low or too high, the fluc-
tuation in traffic density is temporally non-correlated,
though it becomes self-similar at the critical point
between non-congested and congested phases. Thus,
the phase transition model naturally includes the tra-
ditional Poisson model and the self-similar model.

Figure 2 shows the cumulative distribution (P(L))
of congestion duration L for some real Internet traffic,
indicating how much congestion statistically appears.
Here, the congestion duration is the number of con-
secutive congestion time steps multiplied by the bin
size of traffic. A congestion time step is defined as a
time step whose traffic density exceeds a certain
threshold. 

The three plots in the figure show different time
periods in a day, indicating the different values of the
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Fig. 1.   Differences in statistical properties of traffic: (a) Poisson traffic, (b) real traffic, and (c) self-similar traffic. 
Upper graphs correspond to a coarser time scale.  
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control parameter: non-congested (night), critical
(day), and congested (day). When the network is less
congested, the plot decays exponentially P(L)∝ e–L.
Thus, each congestion duration is short and there is a
typical size. On the other hand, in the congested
phase, the plot consists of a small number of short-
lived congestion events, and one much longer one
(near the observation time scale), because most time
steps can be regarded as congestion time steps. In
particular, at the critical point between two phases,
the plot approximately obeys a power law P(L)∝ L–γ,
where γ is the scaling exponent for the congestion
duration distribution. This power law demonstrates
that there is no typical congestion duration. Thus,
analyzing more traffic lets one observe a longer con-
gestion duration. In addition, it is known that the scal-
ing exponent γ corresponds to the scaling exponent β
for the power law in the power spectrum density. This
means that the traffic becomes self-similar at the crit-
ical point. Moreover, Ref. [4] confirmed that the cor-
relation duration of the traffic tends to diverge at the
critical point, supporting the idea that the traffic has
long-range correlation only at the critical point. From
the observational results, we can conclude that the
traffic is not always characterized by self-similarity,
depending on the value of the control parameter.
Thus, phase transition phenomena are more suitable
for characterizing Internet traffic. 

Having explained that the statistical properties of
traffic change in time by the value of the control para-
meter, one more question may arise: How does the

control parameter behave? This corresponds to the
pattern of the coarse-grained view of congestion.
Intuitively, the value of the control parameter
depends on the level of the human activity: daytime is
congested and nighttime is not congested. It is report-
ed that the cumulative distribution of the periods
when the control parameter is stable follows a power
law, indicating that the control parameter changes
rapidly most of the time, though it keeps roughly the
same value for a long time [6]. However, interesting-
ly, the scaling exponent is larger during the day than
during the night. This explains why the control para-
meter’s stable periods are shorter during the day than
during the night. Thus, the control parameter itself
fluctuates slowly in time, and the corresponding traf-
fic changes in a statistical manner. 

3.   Origin of self-similarity

This section explains two possible causes of the
phase transition phenomena from the viewpoint of
network protocols: the non-linearity of buffers [7]
and implicit cooperation between communicators [8]. 

3.1   Non-linearity of buffers
One of the most basic components of the network is

a buffer for packet transfer at a router or a switch.
When packets arrive at a router, they are usually
stored in first-in first-out (FIFO) order. As a packet
passes through the router, a non-linear delay is gener-
ated because the router merges the packets from other
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Fig. 2.   Cumulative distribution of congestion duration in real traffic.
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sources. 
When packet input rate (ρ) to the buffer is smaller

than packet output rate (µ) from the buffer (ρ < µ), the
number of the packets in the buffer is almost zero
(See Fig. 3.). Conversely, for ρ < µ , the buffer size
increases in time and consequently diverges if the
buffer capacity is infinite. However, in a real network,
the buffer capacity is finite, so packets are dropped. 

If the input time series has a packet arrival behavior
that follows an exponential distribution for ρ < µ, then
the output time series has short-time correlation
because the input traffic pattern does not change at
the router. On the other hand, for ρ > µ , the output
time series stays at the maximum output rate. So,
what kind of behavior can be observed at the critical
rate ρ ≈ µ? It is important to understand that the buffer
size at the router does not always diverge at the criti-
cal point for a finite time series. At the critical rate,
we can observe that most buffer sizes are still small,
and self-similarity appears in the output time series.
Figure 3 shows the cumulative distribution of the

congestion duration for the simple buffer simulation.
It is visually apparent that the plot is approximately a
power law at the critical rate, though it is close to
exponential for ρ < µ . Thus, we conclude that the
buffer model is essential to generate the phase transi-
tion phenomena. However, interestingly, the value of
the exponent of the power law is 0.5 at the critical
point in the buffer model. The value of the exponent
for the buffer model is determined by the random
walk of the buffer size: at the critical rate, the fluctu-
ation of buffer size becomes a random walk. It is the-
oretically known that the scaling exponent of the
power law in the power spectrum for the random walk
is 0.5. However, as we observed in Fig. 2, the scaling
exponent for real traffic at the critical point is close to
1.0. Therefore, the simple buffer model alone is still
inadequate to fully explain real network behavior. 

3.2   Implicit cooperation between communicators
The dynamics of traffic in the IP layer is modeled

by the simple buffer model. However, in the Internet,
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Fig. 3.   Non-linearity of the buffer.
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higher protocol layers are actually responsible for
traffic control, which affects the statistical properties
of traffic. Here, we focus on the contribution of the
transport layer on the generation of the phase transi-
tion and self-similar traffic. 

TCP (transmission control protocol) [9] is the cur-
rent de facto standard transport protocol for end-to-
end traffic control. For example, over 90% of the traf-
fic in Fig. 1 is TCP traffic. TCP itself is now a com-
plicated protocol because several major features have
been added to improve network performance. The
main mechanisms of TCP are for (1) sending packets
with appropriate timing for the current status of the
network (congestion/flow control) and (2) guarantee-
ing reliability against packet loss (which would
require retransmission). TCP is strictly standardized,
so it is hard to analyze the system as a whole due to
the complexity of the algorithm. Therefore, analyses
have focused on the above two components. 

In the rest of this section, for the first mechanism,
we analyze the minimal model of the transport proto-
col to reproduce the phase transition and self-similar
traffic by simulation. 

Figure 4(a) shows the network topology used for
our simulation. It consists of one router and three
nodes. In this simulation, each connection between a
sender and a receiver is established on the nodes and
terminated after a fixed number of packets have been
sent correctly. For example, there are two connec-
tions between nodes 1 and 2, one connection between
2 and 3, and one connection between 1 and 3 in the
figure. The flow control of the connection is a stop-
and-wait protocol, which is a simplified TCP. In this
protocol, the sender is permitted to send the next
packet only after receiving from the receiver a packet
acknowledging receipt of the previous packet. Name-
ly, there is only one packet for a given connection in

the network at a certain instance. The control para-
meter of this system is connection arrival rate ρ, and
the arrival pattern has no temporal correlation (i.e., it
is random). Note that neither the number of packets to
be sent nor the connection arrival pattern has long-
range correlation. Therefore, like the single buffer
model: there is no temporal correlation in input. Fur-
thermore, because the retransmission algorithm is
omitted, the buffer size of the router and nodes is set
to infinity. 

Figure 4(b) shows the number of properly finished
connections as the control parameter changes. It is
visually apparent that up to ρ ≈ 3.75 × 10–5, this num-
ber increases linearly, though it rapidly decreases for
ρ > 3.75 × 10–5. The critical rate between the two
phases is ρ ≈ 3.75 × 10–5. 

Figure 4(c) shows the cumulative distribution of
congestion duration using the time series of the num-
ber of packets passing through a link. In the non-con-
gested phase, the plot decays exponentially, and one
large congestion event covers the link in the congest-
ed phase. As expected, the plot is approximately a
power law at the critical point. However, interesting-
ly, the value of the exponent of the power law is close
to 1.0 rather than to 0.5. From this figure, we can con-
clude that the stop-and-wait algorithm is a good
model for reproducing the traffic. 

In the stop-and-wait algorithm, the transmission
rate of packets naturally depends on the round trip
time between the sender and receiver. The round trip
time is the sum of the transfer delay and the waiting
time at the routers. Although the transfer delay is
independent of the degree of network congestion, the
waiting time is affected by packets from other
sources. Therefore, changing the packet transmission
rate based on the round trip time leads to implicit
cooperation with other sources and improves the per-
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Fig. 4.   Contribution of phase transition to TCP: (a) simulation topology, (b) performance, and 
(c) cumulative distribution of congestion duration.
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formance of the system as a whole. Moreover, this
cooperation generates a power law with exponent 1.0
in the reproduced traffic at the critical point. 

Another question is whether this stop-and-wait
model is truly a minimum model. We checked the
CBR (constant bit rate) algorithm instead and found
that although the traffic causes a phase transition, the
scaling exponent of the power law at the critical point
is close to 0.5. This means that the statistical proper-
ties of CBR-controlled traffic can be explained by the
single buffer model. In the stop-and-wait model, a
topology with more than three nodes results in the
same statistical behavior as one with three nodes.
However, the traffic between a pair of nodes is cate-
gorized into the same class as for the CBR result,
even though the traffic is controlled by the stop-and-
wait algorithm. This is because the stop-and-wait
protocol is symmetric between the sender and the
receiver. Therefore, the dynamics of two traffic
sources can be viewed as that of one traffic source,
which has no mechanism for generating the delay.
Thus, it is essential that the round trip time between
two nodes is determined by other sources. Of course,
from the viewpoint of the third node, the traffic relat-
ing to the third node is similarly affected by others. 

Concerning the retransmission mechanism, expo-
nential backoff, which selects the waiting time for
retransmission based on the random time followed by
the exponential function, plays an important role in
determining the statistical properties of reproduced
traffic [10]. Furthermore, it is reported that even two
TCP sources can generate self-similarity through the
retransmission mechanism [11]. Similarly, it has been
pointed out that even in a different protocol layer,
packet collision and exponential backoff in Ethernet
(CSMA/CD (carrier sense multiple access with colli-
sion detection)) are essential for generating the same
type of self-similar traffic as the real traffic [12]. 

4.   Efficiency of the network

From the viewpoint of phase transition phenomena,
it is clear that the critical point is the most efficient
point for the network as a system. Thus, a control in
which the control parameter always stays near the
critical point is a good strategy. Intuitively, from the
users’ viewpoint, when the network is less congested,
the traffic naturally increases because users do not
experience any stress using the network. On the other
hand, when the network is congested, users hesitate
to generate more traffic because of the stress. Simi-
larly, from the system’s viewpoint, to adapt the traffic

rate to the current network status, TCP behaves
aggressively in a less-congested link, though it
decreases the rate in a congested link. Moreover, at
the macroscopic level, a link that is usually congest-
ed will be replaced by a faster link. Thus, it is plausi-
ble that the network status we usually encounter tends
to stay around the critical point based on observations
that self-similarity is observed in several type of
links. However, in a real wide-area network, the time
period when the control parameter is stable also fluc-
tuates in time, meaning that it does not always stay at
the critical point. 

Thus, future work includes developing a method for
planning the network and for controlling the traffic to
improve the network performance from the phase
transition viewpoint. As is clear from the definition,
the critical point is the most efficient point for con-
trolling the network. Therefore, controlling the
amount of traffic so that it approaches the critical
point is a promising strategy. One difficulty for plan-
ning and controlling is that it is still unclear whether
the efficiency of the network as a whole system is
maximum even when a local link is controlled near
the critical point. 

5.   Conclusion

In this paper, I showed from a real data analysis that
the dynamics of Internet traffic can be viewed as a
phase transition phenomenon between non-congest-
ed and congested phases. From the phase transition
viewpoint, the traffic is characterized by self-similar-
ity only at the critical point, though the traffic in the
non-congested phase is modeled as traditional Pois-
son traffic. We also investigated the essential features
for reproducing phase transition dynamics from the
network protocol mechanism and found that the key
roles of the dynamics are (1) the non-linearity of the
buffers at the router and (2) implicit cooperation
between nodes produced by feedback control. Thus,
considering the control and performance evaluation
of networks, we should assume self-similarity in the
reproduced traffic even with a Poisson input traffic,
when the total performance of the network is optimal. 

References

[1] L. Kleinrock, “Queueing Systems,” John Wiley & Sons, New York,
1975.

[2] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Willson, “On the
Self-Similar Nature of Ethernet Traffic,” IEEE/ACM Transactions on
Networking, 2, pp. 1-15, 1994.

[3] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson



Modeling,” IEEE/ACM Transactions on Networking, 3, pp. 226-244,
1995.

[4] M. Takayasu, H. Takayasu, and K. Fukuda, “Dynamic Phase Transi-
tion Observed in Internet Traffic Flow,” Physica A, 277, pp. 248-255,
2000.

[5] H. E. Stanley, “Introduction to Phase Transition and Critical Phe-
nomena,” Oxford University Press, New York, 1971.

[6] K. Fukuda, L. A. N. Amaral, and H. E. Stanley, “Similarities between
communication dynamics in the Internet and autonomic nervous sys-
tem, EuroPhysics Letters, Vol. 62, pp. 189-195, 2003.

[7] M. Takayasu, A. Tretyakov, K. Fukuda, and H. Takayasu, “Phase
Transition and 1/f noise in the Internet Traffic Transport,” Proc. of
Traffic and Granular Flow 97, pp. 55-76, 1997.

[8] K. Fukuda, M. Takayasu, and H. Takayasu, “Minimal model of Inter-
net traffic,” Proc. of Traffic and Granular Flow 01, pp. 389-400, 2001.

[9] J. Postel, “Transmission Control Protocol,” Request for Comments
793, 1981. 

[10] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger, “Dynamics
of IP Traffic: A Study of the Role of Variability and the Impact of
Control,” Proc. of SIGCOMM 99, pp. 301-313, 1999.

[11] A. Veres and M. Boda, “The Chaotic Nature of TCP Congestion Con-
trol,” Proc. of IEEE INFOCOM 2000, pp. 1715-1723, 2000.

[12] K. Fukuda, M. Takayasu, and H. Takayasu, “Origin of Critical Behav-
ior in Ethernet Traffic,” Physica A, 297, pp. 289-301, 2000.

Regular Papers

34 NTT Technical Review

Kensuke Fukuda
Research Scientist, Ubiquitous Network Ser-

vice System Laboratory, NTT Network Innova-
tion Laboratories. 

He received the Ph.D. degree in computer sci-
ence from Keio University, Tokyo in 1999. He
joined NTT Network Innovation Laboratories in
1999. In 2002, he was a visiting scholar in
Boston University. His research interests are the
dynamics of Internet traffic/routing and scientif-
ic aspects of networks. He is a member of the
Association for Computing Machinery.


