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1.   Introduction

In many scientific and engineering domains, com-
plicated relational data structures are frequently rep-
resented by networks or, equivalently, graphs. For
example, WWW (World Wide Web) sites are often
represented by hyperlink networks, with pages as
nodes and hyperlinks between pages as edges; the
interactions between genes, proteins, metabolites,
and other small molecules in an organism are repre-
sented by gene regulatory networks; and the relation-
ships between people and other social entities are
characterized by social networks. This is because net-
work representations often provide researchers with

important insights for understanding the intrinsic data
structure with the help of some mathematical tools
such as graph theory. Another simple but important
method for studying a network and intuitively under-
standing its inherent structure is “browsing” over a
network layout that is embedded and visualized in a
low-dimensional Euclidean space, examining nodes
directly one by one, following their connections, and
comparing their connectivity with other nodes. Our
goal is to develop an efficient visualization algorithm
that embeds a network into a low-dimensional
Euclidean space in a manner that is suitable for
browsing.

Many network visualization methods have been
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The sub-network is clipped 
out and re-embedded.

Fig. 1.   Visualization result for the NTT network produced
by the classical MDS method.

The sub-network is clipped 
out and re-embedded.

Fig. 2.   Visualization result for the NTT network produced
by the KK spring method.
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reported in the literature, including simple linear pro-
jection methods and more sophisticated spring meth-
ods. Figures 1 and 2 show visualization results for
the WWW hyperlink network consisting of all the
Web pages located in the NTT domain and including
“www.ntt.co.jp” in their URL (universal resource
locator), which is referred to as the “NTT network”
hereafter. Figure 1 was produced by a linear projec-
tion method called classical MDS (multi-dimension-
al scaling) [1]. We see that many nodes collapse to a
single point. This seems to be a limitation of the lin-
ear projection methods. Figure 2 was produced by a
spring method called the KK (Kamada & Kawai)
spring method [2]. It does not suffer from the node
collapse problem. However, looking carefully, one
can observe that many nodes tend to be arranged
densely in semi-circles, which is often characterized
as a “dandelion” effect and is not desirable when our
aim is browsing. The KK spring method views a net-
work as a graph and first calculates graph-theoretic
distances for each pair of nodes. Here, the graph-the-
oretic distance can be calculated using a shortest path
algorithm on a graph. As shown in Fig. 3, a virtual
spring is then constructed between the nodes where
the natural spring length is equal to the graph-theo-
retic distance. The network layout changes its shape
while each virtual spring tries to maintain its natural
length as much as possible. As a result, graph-theo-
retic distances are restored as Euclidian distances.
This method is especially effective when the number
of nodes is small and a sparse layout is possible.
However, it fails for a large-scale network with many
nodes and connections.

In both cases, if the sub-network enclosed by the
dotted circle on the left of each picture is “clipped
out” by removing the nodes and connections outside
this circle and is re-visualized as shown on the right

in each picture, the embedded network layouts before
and after the clipping are observed to become quite
different from each other. This observation is
expressed by saying that neither the classical MDS
method nor the KK spring method has a good “clip-
ping stability” property. While we are browsing a
network, we may often want to focus on a small part
of the network and study it in detail. A visualization
method with poor clipping stability will probably
make it very difficult to achieve flexible browsing.

2.   Proposed visualization method

NTT Communication Science Laboratories has
recently proposed an efficient network visualization
method suitable for browsing [3]. This method uti-
lizes only local connectivity information between
nodes as a direct criterion. It is based on the follow-
ing idea: adjacent (i.e., directly connected) nodes
should be placed close to each other, and non-adja-
cent nodes should be placed anywhere as long as they
are relatively distant from each other. Here, “relative-
ly distant” means that the distance between non-adja-
cent nodes is larger than any of the distances between
adjacent nodes.

First, a discrete binary similarity measure is defined
between nodes such that the similarity between adja-
cent nodes is 1 and that between non-adjacent nodes
is 0. Second, a continuous similarity measure
between the embedded nodes is defined such that the
Euclidean distance between the nodes is normalized
in the range between 0 and 1 by applying some expo-
nential functions. Then a quantity known as the
“cross-entropy” of these two similarity measures is
calculated. The cross-entropy evaluates the incom-
patibilities between the two similarity measures. By
minimizing the cross-entropy, we can find a network
layout embedded in a low-dimensional Euclidean
space where the continuous similarity measure
approximates the discrete similarity measure as
closely as possible, resulting in the two similarity
measures being as compatible as possible. For this
purpose, a fast and efficient iterative improvement
algorithm for minimizing the cross-entropy has been
developed. Figure 4 outlines the proposed method.

Figure 5 shows a visualization result for the same
network data as in Figs. 1 and 2, but produced by the
proposed visualization method. The nodes in Fig. 5
are laid more uniformly in a radial manner than those
in Figs. 1 and 2, giving a space-efficient and well-bal-
anced layout. Moreover, the layouts before and after
clipping are fairly similar this time, i.e., the proposed

1
1

2 Euclidian distance

Virtual spring whose length is
the graph-theoretic distance

Efficient when there 
are only a few nodes

≅

Fig. 3.   The spring method tries to restore graph-
theoretic distances as Euclidian distances.
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method has better clipping stability. We believe that
clipping stability is an important property for brows-
ing nodes and uncovering new knowledge from the
network.

Figure 6 shows a three-dimensional (3D) result for
the same data produced by the proposed method. The
layout is displayed on a screen using VRML (virtual
reality modeling language). You can freely zoom in
and out, and the layout can be projected from any
viewpoint. Another example is shown in Fig. 7,
which is human relationship data taken from a Web
site [4] that was generated by assembling co-author-
ship relationships in conference papers that appeared
in NIPS (Neural Information Processing Systems)
volumes 0 to 12, where an author corresponds to a
node and two authors who share at least one joint

1. Focus on the local connectivity information instead of using the graph-theoretic distances and consider the two 
    similarity measures:

• Discrete similarity measure evaluates whether two nodes are adjacent. (i.e., they have a close relationship)
• Continuous similarity measure evaluates whether their positions are physically close.

2. Define a cross-entropy that evaluates the incompatibilities between the two similarity measures

3. Minimize the cross-entropy by employing the fast iterative improvement algorithm and find the optimal node
    positions, resulting in a layout such that:

Non-adjacent nodes 
are placed anywhere
as long as they are 
distant enough from 
the current node.

Adjacent nodes are
placed close to the 
current node.

Current node

Fig. 4.   Outline of the proposed method.

The sub-network is clipped 
out and re-embedded.

Fig. 5.   Visualization result for the NTT network produced by the proposed method.

Fig. 6.   3D visualization result for the NTT network
produced by the proposed method.
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paper are considered to be directly linked. A portion
of the network is displayed in Fig. 7.

3.   Quantitative measure for evaluating
visualizations

In the earlier sections, we observed that the pro-
posed visualization method produces an intuitively
better network layout. However, those observations
were rather subjective. In this section, we attempt to
evaluate the embedded network layout in a strictly
objective and quantitative fashion. From a visualiza-
tion viewpoint, embedding into Euclidean spaces
with more than three dimensions is meaningless, but
quantitative analysis can be applied to embeddings
into higher-dimensional spaces.

Experiments were performed to embed different
types of network data into relatively low-dimension-
al spaces by the classical MDS method, KK spring

method, and proposed method. Roughly speaking,
the proposed evaluation measure is defined to reflect
the ratio of “consistent” parts to “inconsistent” parts
in the node layout, where a part of the node layout is
“inconsistent” when non-adjacent nodes are placed
closer than adjacent nodes. Figure 8 shows the eval-
uation results. The networks used in the experiment
were (a) the gene regulatory network of the bacterium
“Escherichia coli” with 328 nodes and 456 links, (b)
NIPS co-authorship network with 1061 nodes and
2080 links, and (c) WWW hyperlink network of NTT
domain with 2870 nodes and 9337 links. The vertical
axis shows the value of the evaluation measure, i.e.,
the degree of consistency of the embedded network
layout; hence, the higher the better. From these
results, it is clear that the proposed visualization
method always gives the most consistent embed-
dings, among which the most successful were the
results for the WWW hyperlink network of NTT,
which is the largest and the most complicated.

4.   Application to 3D Web browsers

We wish to use the proposed method to visualize
many different types of networks in different areas.
As one example, the prototype of our 3D Web brows-
er is shown in Fig. 9. The left side of the window is a
normal Web browser view and the right side displays
the hyperlink network around the currently browsed
Web page. A user can move to a new Web page by
clicking a node in the network as well as by clicking
hyperlink words on the Web page as usual. As the
user moves among Web pages, the network grows
based on the information gathered so far, and eventu-

Fig. 7.   Visualization result for the NIPS co-authorship
network produced by the proposed method.
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Fig. 8.   Quantitative evaluations of the visualization results.
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ally the entire hyperlink network structure is
revealed.

The system can show the position of the current
Web page in the entire hyperlink network. It can also
show the history of the visited Web pages as a trajec-
tory and can replay it as needed. It will give us a more
realistic and enjoyable Web browsing experience.

The proposed method is also used as a core visual-
ization engine in Multiple Topic Detection by Para-
metric Mixture Models (PMM), described in the pre-
vious article [5].
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Fig. 9.   Screenshot of the 3D Web browser.


