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1.   Introduction

Optical fiber has become a vital element of the
infrastructure supporting the continuously expanding
IT (information technology) society. Although it has
mainly been used in backbone networks, its applica-
tion has now been extended to access networks. How-
ever, the optical characteristics of conventional sin-
gle-mode fiber (SMF), where dopants are doped into
silica glass to form a waveguide structure, limit the
optical communication capacity at currently used
wavelengths. There has been a strong need for a new
type of fiber with which to construct more economi-
cal networks based on an ultrahigh-capacity back-
bone.

Recently, optical fibers called “holey fibers” have

received increasing attention because they provide
transmission characteristics that are superior to those
of conventional single-mode fiber. One such holey
fiber is index guiding photonic crystal fiber (PCF)
[1], which has dozens of small air holes arranged like
a crystal lattice, as shown in Fig. 1. As with conven-
tional single-mode fiber, light can propagate along
the fiber by a mechanism based on total internal
reflection.

In this article, we outline recent progress on PCF
especially for transmission purposes.

2.   Unique features of PCF

PCF has several unique features that make it suit-
able for ultrawide-band and ultralong-distance trans-
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Fig. 1.   Cross-sectional photograph of photonic crystal fiber.
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mission. One of its most interesting properties is its
endlessly single-mode characteristics, which could
open a new optical transmission window ranging
continuously from the visible to near-infrared wave-
length regions. This particularly wide wavelength
window cannot be obtained with conventional single-
mode fiber. Therefore, it should be possible to great-
ly increase the transmission capacity of PCF.

In addition, the intrinsic loss of PCF is less than that
of conventional single-mode fiber. This is because
PCF is composed solely of pure silica glass without
any dopants. This is an advantage because the use of
dopants often increases the scattering loss. This fea-
ture makes PCF a promising candidate as a long-dis-
tance transmission medium. However, if we are to use
it as a transmission medium, we must fabricate long
lengths of low-loss PCF.

3.   Low-loss and long-length PCF

The main loss factors for PCF are confinement loss,
intrinsic silica loss due to scattering and absorption,
and extrinsic loss caused by contamination and sur-
face roughness. Unfortunately, the extrinsic loss
dominates the optical attenuation of current PCF.
Efforts to reduce attenuation are shown in Fig. 2. In
March 2003, NTT Access Network Service Systems
Laboratories established a world record of 0.37
dB/km at 1550 nm [2] and then broke this record six
months later with a loss of 0.28 dB/km [3] by reduc-

ing the optical attenuation caused by surface rough-
ness and OH absorption. As a result of these efforts,
the loss now approaches the intrinsic loss of silica-
based fiber (0.14 dB/km).

Until recently, the maximum available length of
PCF was limited to a few kilometers, which meant
that it would have been necessary to concatenate
many segments to construct a long transmission line.
Recent work on the fiber drawing process and the use
of a large PCF preform led to the production of an
approximately 10-km-long PCF in September 2003
[3] and a 100-km-long, low-loss (0.3 dB/km) PCF in
March 2005 [4].

4.   Mechanical reliability of PCF

A PCF cabling process is needed if PCF is to be
used as a transmission medium. Therefore, high
mechanical reliability is required. The fact that PCF
contains air holes has led to the belief that its tensile
strength must be lower than that of conventional sin-
gle-mode fiber. However, it has been found that PCF
with an optimized structure is actually stronger than
conventional single-mode fiber [5]. The tensile
strengths of a PCF with 90 holes and a conventional
single-mode fiber are compared in Fig. 3. The tensile
strength of the PCF is 62 N and that of the single-
mode fiber is 58 N. The existence of the holes pre-
vents cracks from growing. There appears to be an
optimal hole size, hole pitch, and number of holes for
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Fig. 2.   Progress in reducing the loss of PCF.



Letters

Vol. 3  No. 8  Aug. 2005 59

higher-tensile-strength PCFs. However, before PCF
can be employed as a practical transmission infra-
structure, the long-term stability of its mechanical
and optical characteristics must be studied.

5.   Application as transmission medium

The new low-loss PCF has been tested in several

transmission experiments. NTT Access Network Ser-
vice Systems Laboratories performed the first suc-
cessful 19-channel wavelength division multiplexing
transmission experiment (190 Gbit/s) through a 5-
km-long PCF in the 850–1550-nm wavelength region
[6]. The measured bit error rate (BER) performance
in the 850-, 1310-, and 1550-nm bands is shown in
Fig. 4. There was no noticeable BER degradation in
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Fig. 3.   Probability plot of tensile strength test.
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Fig. 4.   Ultrawide-band transmission experiment.
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any of the transmission bands. These results show
that the single-mode high-bit-rate transmission
potential of PCF was confirmed experimentally over
a wide wavelength range from 850 to 1550 nm, which
corresponds to a bandwidth of 160 THz. We can
expect that an endlessly single-mode PCF will pro-
vide an ultrawide band of several hundred terahertz
for future optical communication systems with an
ultralarge capacity on the petabit-per-second order.

Moreover, NTT Access Network Service Systems
Laboratories has reported the first optical soliton
transmission experiment with a 100-km-long and
low-loss (0.3 dB/km) PCF at 10 Gbit/s [4]. The
experimental setup, BER performance, and autocor-
relation traces before and after the 100-km transmis-

sion are shown in Fig. 5. A BER of less than 10–11

was successfully obtained without any power penal-
ty. The output pulse was slightly wider than the input
pulse, but no BER degradation was observed because
the output pulse width was much narrower than the
bit slot. Thus, power-penalty-free dispersion-man-
aged soliton transmission over 100 km was achieved.

These experimental results show that low-loss PCF
is a promising candidate as a long-distance transmis-
sion medium.

6.   Future directions

Recent progress on PCF has shown its potential as
a high-bit-rate, large-capacity, and long-distance
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transmission medium. From the practical point of
view, several feasibility studies will be undertaken on
PCF as a future communications medium. These will
include investigating its transmission characteristics
and reliability over wide wavelength regions and
technologies for testing, connecting, and cabling it.
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