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1.   Introduction

The use of waveguide division multiplexing sys-
tems is increasing rapidly and, in these systems,
arrayed-waveguide gratings (AWGs) play important
roles as multiplexer/demultiplexers [1]-[3]. They
offer compactness, high stability, excellent optical
characteristics, and mass producibility. Until now,
AWGs have been developed solely for telecommuni-
cation applications, so their wavelength range has
been limited to 1.3–1.6 µm [4]. However, for novel
applications such as sensors [5], [6], we need AWGs
with a shorter wavelength range, including the visible
wavelength range. This is because many materials
and analytes have specific characteristics at these
wavelengths. Until now, only theoretical considera-
tion has been given to AWGs operating in the visible
wavelength range [7]. 

One of the key advantages of AWGs is their ability
to provide the fine wavelength resolution required for
optical spectroscopic sensors designed to identify
materials and analytes [6]. This arises from the design
flexibility of the waveguide layout and enables us to

obtain arbitrary spectroscopic characteristics by
changing the path length difference between neigh-
boring arrayed waveguides and the focal length of the
slab waveguides.

This paper describes the first experimental results
obtained for silica-based AWGs that operate in the
visible wavelength range. It shows that silica-based
visible AWGs have the potential for application to the
field of spectroscopy as well as to short-wavelength
optical communication systems [8].

2.   Design

The configuration of an N × N AWG multiplexer is
shown in Fig. 1. The multiplexer consists of N
input/output waveguides, two focusing slab wave-
guides, and arrayed waveguides with a constant path
length difference ∆L between neighbors. Multiwave-
length light input to one of the input waveguides is
launched into the first slab waveguide and excites the
arrayed waveguides. After traveling through the
arrayed waveguides, the light beam interferes con-
structively at one focal point in the second slab. The
location of the focal point depends on the signal
wavelength λ because the relative phase delay in each
waveguide is given by ∆L/λ. The slab and arrayed
waveguides act as a lens and a diffraction grating,
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respectively. 
First, we optimized a set of waveguide parameters

for the visible wavelength range. A wide waveguide
generally has a low propagation loss because the scat-
tering caused by the sidewall roughness of the wave-
guide has a less severe effect. Moreover, the radiation
loss at the bent waveguides is also reduced. On the
other hand, the use of wide waveguides that allow
multiple modes has a detrimental effect on optical
characteristics such as modal noise. A quasi-single-
mode waveguide with a slightly larger waveguide
width than a true single-mode waveguide can provide
both low loss and low modal noise. To achieve a
quasi-single-mode condition, we evaluated the dis-
persion characteristics of a quasi-single-mode wave-
guide in the visible wavelength range. The dispersion
characteristics of a waveguide are expressed by the
relation between the normalized frequency V and the
normalized propagation constant b, which is given by

(1)

where m denotes the mode number. The relation pro-
vides the condition that governs how many modes
can be allowed in the waveguide. Figure 2 shows the
calculated dispersion characteristics of waveguides
with a refractive index contrast of 0.75% and a core
size of 3 µm × 3 µm. The cutoff wavelengths for the
E12 and E22 modes are 750 nm and 530 nm, respec-
tively. In other words, a quasi-single-mode condition
can be achieved between 530 and 750 nm with this
set of waveguide parameters.

We designed an AWG that can resolve a very wide
spectral range of 450 to 750 nm. It requires only a
small diffraction order of one; therefore, we chose a
gull-wing-shaped AWG layout to achieve sufficient

separation between the arrayed waveguides by using
S-shaped waveguides (as shown in the inset of Fig.
5(a)). The path length difference and the center trans-
mission wavelength were 0.35 µm and 500 nm,
respectively. The wide-range AWG was 26 mm × 5
mm in size. We designed another AWG that has a nar-
row output wavelength spacing of 0.75 nm and a high
diffraction order of 105 with a long path length dif-
ference of 50.18 µm to investigate high-wavelength-
resolution applications such as absorption spectrum
analysis. The layout was similar to that of conven-
tional AWGs designed for telecommunication use
(see Fig. 5(b)). This AWG was 20 mm × 12 mm. The
minimum bending radius was set to 4 mm for both
AWGs.
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Fig. 1.   Schematic configuration of silica-based arrayed-waveguide grating.
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Fig. 2.   Dispersion characteristics of silica-based
waveguide for visible wavelength range.
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3.   Results

We fabricated the AWGs using conventional silica-
based planar lightwave circuit (PLC) technology
including flame hydrolysis deposition and reactive
ion etching with the waveguide parameters described
in the previous section. In the following experiments,
a halogen lamp (Ando AQ4303B) was used as a light
source. The light was launched into the waveguides
through optical fibers designed to handle visible
wavelengths. The output spectra of the waveguides
were measured with an optical spectrum analyzer
(Ando AQ6315A).

Figure 3 shows transmission spectra of a 20-mm-
long straight waveguide and of a 28-mm-long curved
waveguide with a bending radius of 4 mm. They were
fabricated before the AWGs and enable us to investi-
gate the waveguides themselves. The insertion losses
of the waveguides at a wavelength of 630 nm were 1.3
and 1.6 dB, respectively. Assuming that the loss dif-
ference was caused only by waveguide propagation
loss, the estimated propagation and fiber coupling
losses were 0.4 dB/cm and 0.3 dB/point, respectively.

In addition, as seen in Fig. 3, both spectra had a dis-
continuity at 550 nm, which almost corresponds to the
cutoff wavelength for the E22 mode. Similarly, a large
loss increase was observed for the curved waveguide
spectrum at wavelengths longer than 880 nm, which
indicates that the cutoff wavelength for the E12 mode
is around 880 nm. Thus, the wavelength range of
550–880 nm remains in the quasi-single mode.

A microscope image obtained at the end surface of
the eight outputs of the AWG is shown in Fig. 4. A
range of colors similar to those of the rainbow can be
seen at the eight outputs, indicating that the AWG
successfully resolved visible light. The transmission
spectra of the AWG are shown in Fig. 5(a). The out-
put wavelengths were from 442 to 700 nm with the
smallest insertion loss of 5 dB at output 7 (671.4 nm).
The 3-dB bandwidths were 15 nm. As described
above, the cutoff wavelength of the E22 mode was
around 550 nm, causing an excess loss of 4 dB at out-
put 3 (531.4 nm). Unfortunately, the optical power of
the halogen lamp we used in this experiment was too
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Fig. 3.   Transmission spectra of straight and bent
waveguides in the wavelength range from visible
to near infrared.
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Fig. 4.   Microscope image of eight outputs of wide-range
AWG.
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Fig. 5.   Transmission spectra of (a) wide-range AWG and
(b) narrowband AWG for visible wavelengths.
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weak to enable us to observe the true crosstalk. How-
ever, we can say that it is less than –25 dB from our
observation of the crosstalk around 700 nm. 

The transmission spectra of the AWG with narrow
output wavelength spacing is shown in Fig. 5(b). The
output wavelength ranged from 697.9 to 702.1 nm,
and the measured channel spacing was 0.75 nm as
expected. The insertion loss and the 3-dB bandwidth
were 4.5 dB for the center output (699.1 nm), and 0.34
nm, respectively. The narrowband AWG for visible
wavelengths clearly meets the requirements for fine-
wavelength-resolution applications. 

4.   Conclusion

We demonstrated arrayed-waveguide gratings for
the visible wavelength range. First, we designed the
waveguide parameters by optimizing the dispersion
of the waveguides to minimize their bending loss.
The measured propagation loss was 0.4 dB at a wave-
length of 630 nm, which is sufficiently small for opti-
cal circuits. Then, we used these parameters to design
and fabricate two types of AWGs: one with outputs
ranging from 400 to 700 nm and the other with a nar-
row output-wavelength spacing of 0.75 nm and a cen-
ter wavelength of 700 nm. We observed rainbow-like
colors at the outputs of the first AWG. The minimum
insertion loss was 4.5 dB for the second AWG. Both
AWGs have good spectroscopic characteristics, and
the results potentially expand the application area of
silica-based AWGs. AWGs are now available for
wavelengths from visible to near infrared.
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