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1.   Introduction

The electro-optic (EO) effect is a phenomenon in 
which the refractive index of a substance is modulat-
ed by an externally applied electric field. This phe-
nomenon is used to make optical modulators where 
the intensity or phase of a light beam is modulated 
by an electric signal. Substances for which this phe-
nomenon is significant are called electro-optic mate-
rials. The most common material is lithium niobate 
(LiNbO3, LN). For LN, the EO effect is linear; that 
is, the refractive index change is proportional to the 
applied electric field. This is called the Pockels 
effect. Potassium tantalate niobate (KTa�−xNbxO3, 
KTN) is another EO material that is well known 
because of the strength of its EO effect [�], [2]. The 
effect for KTN is quadratic (Kerr effect) where the 
refractive index change is proportional to the square 
of the electric field. Although the effects are differ-
ent for these two materials, it is possible to compare 
their figures of merit by introducing a bias electric 
field. We can expect the EO effect to be more than 

ten times larger for KTN than for LN. To date, how-
ever, there have not been any commercial products 
utilizing KTN, while LN is already used in various 
products such as 40-Gbit/s light modulators for 
fiber-optic telecommunication in addition to surface 
acoustic wave filters for mobile phones. One impor-
tant reason of this is that KTN crystal has been diffi-
cult to grow compared with LN. In 2003, our labora-
tories succeeded in growing sizable crystals of opti-
cal quality with volumes of over 30 cm3 (e.g., 40 
mm × 40 mm × 20 mm) [3]. We recently improved 
the growth technique to achieve a high degree of 
reproducibility. Moreover, we additionally found 
that significant light beam deflection occurs in KTN 
single crystals [4], [5]. Promising beam deflection 
devices are expected to be developed by utilizing 
this new phenomenon.

In this paper, we introduce KTN crystal and its EO 
properties. Then, we review a growth technique 
called the top seeded solution growth method used 
for KTN single crystals [6]. We also present some 
examples of the EO properties of our crystals to 
show the high performance of KTN.
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2.   Potassium tantalate niobate

KTN is the mixture or solid solution of potassium 
niobate and potassium tantalate. Potassium niobate 
(KNbO3, KN) is also a well-known oxide crystal 
that is commonly used for optical second harmonic 
generation via its optical nonlinear effect. It is one 
of the perovskite-type materials whose general for-
mula is ABO3. The crystallographic structure of 
perovskite is shown in Fig. 1. Cations of A are at the 
corners, cations of B go into the body center, and 
oxygen anions are at the face centers. The unit is 
drawn in a cubic shape in Fig. �. In fact, it is cubic 
for KN crystals at high temperatures over 435ºC. 
However, a KN crystal undergoes three phase transi-
tions when cooling from such high temperatures, 
and its crystallographic structure changes. At the 
first transition, the cubic structure changes to a 
tetragonal structure. Next, it becomes orthorhombic, 
which is the phase at around room temperature. It 
then becomes rhombohedral at low temperatures. 
KN is regarded as a ferroelectric substance. It thus 
has spontaneous polarization with zero electric field. 
In the cubic phase, however, the spontaneous polar-
ization vanishes and the crystal is paraelectric. 
Potassium tantalate (KTaO3, KT) is also a perovskite 
oxide. However, it does not undergo any phase tran-
sitions as the temperature changes but remains 
cubic. Therefore, the mixture KTN has three phase 
transitions like KN, but the transition temperatures 
change with the composition. All the transition tem-
peratures rise as the KN fraction increases, as shown 
in Fig. 2 [�], [7].

KTN has a strong Kerr effect in the cubic phase, 
so it is usually used in the cubic phase. Suppose that 
a light beam propagates along the x direction in Fig. 
�, the vibrating electric field of the light is parallel to 
the y direction, and a constant external electric field 
is applied also along the y direction. The resulting 
change in the refractive index caused by the external 
electric field is expressed as 

 ∆ n = − �
2

n0
3s��E 2,    (�)

where n0 is the original refractive index, E is the 
external field, and s�� is one of the Kerr coefficients. 
This s�� is given by [8]

 s�� = g��(e−e0)
2 = g��e0

2(er−�)2,  (2)

where e, e0, and er are the KTN permittivity, the vac-
uum permittivity, and the relative dielectric constant, 
respectively, and g�� is a function of the wavelength 
of the light but depends on neither er nor the temper-
ature. Because e r is much larger than � for KTN 
crystals, we can regard s�� as being proportional to 
e r

2. According to the Curie-Weiss law, e r becomes 
significantly large at temperatures just above the 
phase transition temperature (the upper curve in Fig. 
2. Hereinafter, the phase transition means the transi-
tion between the cubic and tetragonal phases and Tc 
means the temperature where this transition occurs). 
Therefore, we can obtain a huge Kerr coefficient s�� 
at room temperature by choosing the composition 
(KN fraction) so that Tc is around room temperature. 
We discuss the values of er and s�� in section 4.
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Fig. 1.   Crystallographic structure of ABO3 perovskite.
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3.   Crystal growth

It is essential to grow sizable single crystals with 
good optical homogeneity for EO oxide materials 
such as LN and KTN. KTN single crystals are grown 
by a method called top seeded solution growth 
(TSSG) [6], which is similar to the Czochralski 

method used for LN or silicon crystals. The growth 
apparatus for KTN single crystals is shown in Fig. 3. 
The furnace uses resistance heating elements. The 
mixed ingredients of the crystals are melted in the 
platinum crucible at temperatures such as �200ºC. 
We dip a seed crystal into the molten ingredients, 
slowly cool it, and thereby grow a crystal gradually 
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Fig. 2.   Concentration dependence of the three transition temperatures for KTN.
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Fig. 3.   TSSG apparatus for KTN single crystal growth.
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from the seed. The seed crystal is attached to a rod 
that is simultaneously rotated and lifted by a mecha-
nism located outside the furnace. This apparatus is 
almost the same as those used for Czochralski 
growth.

However, KTN single crystals have been much 
more difficult to grow than conventional materials. 
This is mainly due to the fact that the grown crystals 
have different compositions from the molten ingre-
dients. The phase diagram of the KT-KN system at 
elevated temperatures is shown in Fig. 4 to explain 
this situation [9]. The diagram shows two tempera-
ture curves as functions of composition, Tl (x) and Ts 

(x). Tl (x) is called the liquidus and Ts (x) the solidus. 
Above the liquidus, the substance is completely liq-
uid. Below the solidus, the substance is solid. When 
we intend to grow a crystal from material with com-
position X0, we melt the material by heating it 
through the liquidus temperature T0 = Tl (X0). We 
then cool it to Tl (X0) and below. Here, the material 
is no longer completely liquid and solidification 
occurs. The composition of the solid (or crystal) is 
x0, which gives the same temperature T0 on the soli-
dus Ts (x0). The KN fraction of the growing crystal is 
less than that of the liquid. Thus, niobium left over 
from the solidification is gradually concentrated in 
the liquid, especially near the growth interface. This 
concentration causes instability of the growth inter-
face. Irregular growth is likely to occur in such a sit-
uation if the growth is too fast. Moreover, it is com-
mon to start the growth with a melt that contains 

additional potassium oxide with KTN ingredients 
because potassium oxide easily evaporates from the 
hot melt. Therefore, excess potassium also tends to 
be concentrated as the growth proceeds. As a result, 
single crystal growth of KTN is more difficult than 
that of conventional materials such as LN. The addi-
tional potassium oxide acts as a kind of solvent, and 
the melt is a solution. Therefore, the growth tech-
nique for KTN crystals is called the top seeded solu-
tion growth method.

The most noticeable defects in KTN crystals are 
inclusions containing excess potassium. They 
strongly scatter light beams and cause inhomoge-
neous variations in the refractive index around them. 
The main reason for the formation of the inclusions 
is excessive supercooling of the solution or exces-
sively fast growth. We succeeded in suppressing the 
occurrence of inclusions by carefully controlling the 
furnace temperature and the growth speed [3]. We 
can now reproducibly grow sizable KTN crystals (> 
30 cm3) without inclusions. A photograph of one of 
our crystals is shown in Fig. 5. The stump of the 
seed crystal can be seen on the center of the top face. 
Neither inclusions nor other irregular growths were 
observed. Sharp growth facets are often observed for 
crystals grown in furnaces with resistance heaters 
because of the gentle temperature gradient around 
the crucible. KTN crystals have a strong tendency to 
show crystallographic (00�) faces [6]. Thus, it is 
possible to see through the mirror surface of the 
crystal in Fig. 5 even though we did not cut or polish it.
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Fig. 4.    Phase diagram at elevated temperatures to show the thermal equilibrium between the liquid and solid during the 
crystal growth.



4.   Electro-optic properties

As described above, the relative dielectric constant 
of paraelectric KTN er obeys the Curie-Weiss law: 

 er ∝ �
T−Tcp  

.     (3)

Here, Tcp is the paraelectric Curie temperature. Thus, 
er increases drastically as the temperature approach-
es Tcp. To obtain er as a function of temperature, we 
cut a 6 mm × 5 mm × � mm chip from a grown sin-
gle-crystal boule, polished its surfaces, formed a pair 
of platinum electrodes by evaporation, and measured 
its capacitance on a temperature-controlled alumi-
num block. The size of the electrodes was 5 mm × � 
mm and the gap between them was � mm. The 
applied voltage was �0 Vp-p AC with a frequency of 
20 Hz. An example of the relative dielectric constant 
as a function of temperature is shown in Fig. 6(a). 
For this chip, the phase transition occurred at around 
35ºC. Above this phase transition temperature Tc, it 
was in the cubic phase. Below Tc, it was in the 
tetragonal phase. For this composition (or this Tc), it 
is known that the phase transition is of the first order 
and that Tcp is slightly lower than Tc. The reciprocal 
of the relative dielectric constant as a function of 
temperature is shown in Fig. 6(b). The �/e r appar-
ently obeyed the Curie-Weiss law (Eq. 3). It can also 
be seen in this figure that Tcp was slightly lower than 
Tc. When a KTN single crystal in the cubic phase is 
cooled, the temperature reaches Tc and the crystal 
enters the tetragonal phase before the temperature 
reaches Tcp. Thus, the relative dielectric constant 
falls to the low value of the tetragonal phase before 
going up to infinity. The relative dielectric constant 

is limited by this characteristic. In addition, it is lim-
ited in practice by Tc ambiguity as a result of the 
lack of compositional uniformity. However, we are 
now able to reproducibly obtain a dielectric con-
stant higher than 20,000. This high dielectric con-
stant enables a very large Kerr effect to be obtained 
according to Eq. (2). The temperature dependence of 
the Kerr coefficient s�� is shown in Fig. 7. The coef-
ficient was measured using a Mach-Zehnder inter-
ferometer. We placed one of the chips described 
above on one of the two arms of the interferometer, 
applied a low-frequency AC voltage to the chip, 
monitored the output optical power, and determined 
the half-wave voltage Vp (Vp is discussed later in this 
section). The maximum value was 2.24 × �0−�4 m2/
V2, which is, to our knowledge, about 8 times larger 
than that previously reported for KTN [2]. We 
ascribe this to the compositional uniformity. The 
Pockels coefficient for the conventional material LN 
is said to be about 30 pm/V. Direct comparison 
between the Pockels effect for LN and the Kerr 
effect for KTN is not possible. However, by apply-
ing a DC bias voltage together with the control sig-
nal, we can use a KTN chip in a similar manner to 
an LN chip. For a DC bias electric field E0, which is 
much larger than the signal electric field Es, Eq. (�) 
is rewritten as

 ∆n = − �
2

n0
3s��(E0+Es)

2

 ≅ − �
2

n0
3s��(E0

2+2E0Es)   (4)

 = − �
2

n0
3s��E0

2− �
2

n0
3(2s��E0)Es.

Here, the first term has no relation to the signal. The 
second term is the same as the refractive index mod-
ulation for the Pockels effect. The pseudo Pockels 
coefficient corresponds to 2s��E0. When we apply a 
voltage of �00 V between a pair of electrodes whose 
gap is � mm, the Pockels coefficient becomes 2240 
pm/V. This is 70 times larger than the value for the 
effect in LN.

Our beam deflection devices utilize this huge elec-
tro-optic effect and the large dielectric constant. 
Details are explained in another paper in this issue 
[�0]. Here, we discuss the merit in applications to 
light intensity modulators. The simplest modulator 
can be fabricated by placing an EO material with 
electrodes between a pair of crossed polarizers. The 
half-wave voltage Vp, which is the voltage difference 
required to change the transmittance from 0% to 
�00%, is expressed by 
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Fig. 5.   Example of as-grown KTN single crystal.
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 Vp =
λ0

n0
3

�
r

d
l

,    (5)

where λ0, r, d, and l are the wavelength of the light 
to be modulated, the effective Pockels coefficient, 
the electrode gap, and the length of the light path in 
the EO material. Thus, when the effective Pockels 
coefficient is 70 times larger, we can reduce Vp to 
�/70. If we permit the same Vp, it is possible to 
reduce l, that is to shrink the device size. According-
ly, we can expect either a drastic reduction in the 
load on the voltage controller or significant minia-
turization of the modulators.

5.   Conclusion

We introduced the growth of KTN single crystals 
and their electro-optic properties. By carefully con-
trolling the temperature in the TSSG method, we can 
now reproducibly grow crystals with sizes of more 
than 30 cm3 with no visible defects. KTN is known 
for its large Kerr effect. Because of compositional 
homogeneity, the Kerr coefficient s�� of our crystals 
exceeded 2.2 × �0−�4 m2/V2, which is about 8 times 
higher than the previously reported value. It also 
corresponds to a value 70 times larger than the Pock-
els coefficient for LN when the bias field is �00 V/
mm. Great improvements are expected if the EO 
material in conventional light modulators is replaced 
with KTN single crystals.
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