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1.   Introduction

Potassium tantalate niobate (KTa1−xNbxO3, KTN) 
is a ferroelectric material and its dielectric constant 
and quadratic electro-optic (EO) constant (Kerr con-
stant) are maximum around the paraelectric-to-ferro-
electric phase transition temperature (TC) [1]. These 
values are huge, so KTN is expected to reduce both 
the volume and driving voltage of EO devices, such 
as optical beam deflectors [2] and modulators [3]. In 
KTN, TC can be adjusted by changing the composi-
tion, i.e., the Ta/Nb ratio [1]. TC increases linearly 
with the amount of Nb (x) [4]. However, if there is a 
spatial change in the Ta/Nb ratio in a crystal, which 
may be induced by changes in the growth condition 
during crystal growth, TC changes spatially, and the 
dielectric constant e and the Kerr constant s change 

spatially at a given temperature. If a crystal’s spatial 
distributions of e and s are large (i.e., the crystal is 
highly inhomogeneous), it is difficult to guarantee 
the characteristics of an EO device manufactured 
from that crystal. Therefore, to guarantee the charac-
teristics of a KTN device, it is necessary to evaluate 
the uniformity of a crystal’s TC before the device is 
manufactured. However, if TC has to be estimated 
with a precision of 0.1°C, the composition should 
be estimated with a precision of 1.5 × 10−4 [4]. This 
is difficult to achieve with conventional element 
analyzers, such as an electron probe microanalyzer 
(EPMA).

In this paper, we describe the system for measur-
ing the TC of KTN that we developed. First, we 
review scanning nonlinear dielectric microscopy 
(SNDM) and describe the probe we developed for 
samples having a huge dielectric constant. Then, 
we describe our demonstration that the TC of KTN 
crystal can be measured locally using SNDM with 
our probe. Experimental results for TC measure-
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ment precision and the spatial distribution of the TC 
of the KTN crystal are also presented. Finally, we 
introduce the software developed to reduce the time 
taken for the operator to measure the TC distribution 
of a KTN crystal.

2.   Scanning nonlinear dielectric microscopy 
(SNDM)

2.1   Principle of SNDM
Scanning nonlinear dielectric microscopy (SNDM) 

has been developed to measure the local dielectric 
constant under a probe needle with high spatial reso-
lution [5], [6]. Moreover, non-destructive measure-
ment is possible, so a crystal that has been evaluated 
using SNDM can be used for manufacturing devices. 
A schematic diagram of SNDM is shown in Fig. 1. 
SNDM uses an LC (inductance and capacitance) 
oscillator with a probe needle. When the probe 
needle is far away from the sample, the resonant 

frequency f0 is 1/ (2π  LC0
 
), where L and C0 are 

the oscillator’s inductance and capacitance (includ-
ing stray capacitance), respectively. When the tip of 
the probe needle makes contact with the sample, the 

resonant frequency fS is 1/ (2π  L(C0+Cs
 
)), where 

CS is the capacitance of the sample under the probe 
needle. As the dielectric constant of the sample 

under the probe needle increases, CS becomes larger 
and fS becomes lower.

To check this, we measured the resonant frequency 
of several dielectric materials. The relationship 
between fS and the dielectric constant at room tem-
perature is shown in Fig. 2. This figure clearly indi-
cates that the larger the dielectric constant, the lower 
fS. Accordingly, when fS is measured as a function 
of temperature, the local TC can be obtained as the 
temperature that gives the lowest fS. Moreover, the 
spatial distribution of TC can be measured by chang-
ing the point touched by the probe.

2.2   Probe for keeping contact force constant
In crystals with a huge dielectric constant, such as 

KTN, fS depends strongly on the contact force that 
the probe needle exerts on the sample. The reason 
for this is as follows: when the probe needle is in 
point contact with a sample having a huge dielectric 
constant, the electric field is concentrated in a very 
small area just under the tip of the probe needle [7], 
and fS depends on the capacitance of that very small 
area. When the contact force is stronger, the contact 
area is larger due to deformation, and fS depends 
on the capacitance of the larger area and is lower; 
namely, fS depends on both the dielectric constant 
and the contact force.

In the work described here, we developed a probe 
that keeps the contact force constant during the mea-
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Fig. 1.   Schematic diagram of SNDM.
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surement of TC. A schematic diagram of the probe 
is shown in Fig. 3(a). The probe consists of a con-
ductive tube and a conductive needle that can move 

up and down in the tube, which has a stopper to 
prevent the needle from falling out. When the tip of 
the probe is not in contact with a sample, the needle 
is held by the stopper, as shown in Fig. 3(b). On the 
other hand, when the tip is in contact, the sample 
pushes the needle upwards, as shown in Fig. 3(c). 
With this design, the contact force is equal to the 
force of gravity acting on the needle and can be kept 
constant.

3.   Experimental results

3.1   Measurement of TC of KTN
The resonant frequency fS is plotted as a function 

of temperature T in Fig. 4 when the probe needle 
(Au-coated, tip radius: 500 µm) came into contact 
with a KTN single crystal (6 × 5 × 0.5 mm3, x ≈ 0.4). 
We estimated TC to be about 35°C because domains 
appeared or disappeared at this temperature. The fS 
was about 1214 MHz when the probe needle was 
kept far away from the sample; namely, CS = 0. We 
used a Peltier device and a controller to sweep the 
temperature and we collected data during the cool-
ing phase. The sweep rate was not constant, but the 
average rate was about 0.3°C/s. As shown in the fig-
ure, fS was minimum at around 35°C. This indicates 
that SNDM can measure the TC of KTN.

3.2   TC measurement precision
We evaluated the precision of this method. We 

performed the TC measurement N times, where N = 
101. A histogram of TC is shown in Fig. 5. Here, for 
TC, we used the temperature at which dfS/dT was the 
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Fig. 2.   Resonant frequency fS versus relative dielectric constant.
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smallest because it  changes drastically around TC, as 
shown in Fig. 4. This large change is induced by an 
abrupt change in the dielectric constant. The mean 
value of TC, T  C, was 35.6°C, and the standard devia-

tion Σ (TCi − TC)2/ (N−1)
N

i=1
 was 0.09°C. If we use 

the standard deviation as the precision, then the pre-
cision of this method is 0.09°C, which corresponds 
to a composition resolution of 1.4 × 10−4, using the 
empirical equation TC = 676x + 32 measured in kel-
vin, where x is the amount of Nb [4]. This precision 
for the composition is difficult to achieve with other 
element analyzers, such as an EPMA.

3.3   Spatial distribution of TC

Next, we evaluated the TC distribution of the crys-
tal. We measured TC at 20 (= 5 × 4) points with a 
spacing of 1 mm. The distribution is shown in Fig. 
6. For this crystal, TC is higher in the top left of the 
figure. The maximum and minimum TC values were 
35.37 and 34.7°C, respectively. Here, TC = 35.37ºC 
corresponds to x = 0.4091 and 34.7ºC to x = 0.4081, 
where x is the amount of Nb. Therefore, the variation 
in TC in this crystal was 0.67°C, which corresponds 
to a variation in composition of about 0.001 using 
the above empirical equation [4].
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Fig. 4.   Resonant frequency fS as a function of temperature when the probe made contact with KTN crystal.
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4.   Measurement system

To reduce the time required for the operator to 
evaluate the TC distribution of the KTN crystal, we 
automated the measurement and data processing. A 
window of the software we developed is shown in 
Fig. 7. After the measurement condition (measure-
ment spacing and number of points etc.) has been 
assigned and the sample has been set, the mea-
surement is finished in a fully automated manner. 
Moreover, to eliminate manual data processing after 
the measurement, the software detects TC by a dif-
ferential calculation, as discussed in section 3.2 and 
records it.

5.   Conclusion

We described our system for measuring the phase 
transition temperature TC of KTN using SNDM and 
a newly developed probe designed to keep the con-

tact force constant during the temperature sweep. 
The precision (standard deviation) is 0.09°C, which 
corresponds to a composition resolution of 1.4 × 10−4. 
By measuring TC while changing the position, we 
demonstrated that we could measure the TC distribu-
tion of the KTN crystal. We also developed software 
capable of measuring the TC distribution of the KTN 
crystal in a fully automated manner. This measure-
ment system will enable the uniformity of KTN 
crystals to be evaluated, so it will be possible to 
guarantee the characteristics of KTN devices made 
from KTN crystals.
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