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1.   Introduction

The mechanically movable parts of microelec-
tromechanical systems (MEMS) devices must be 
protected from dust and moisture to ensure that they 
move properly in practical environments. We have 
been developing seamless integration technology 
in order to stack MEMS devices ranging in size 
from �0 mm to � mm on LSIs (large-scale integrated 
circuits) [�]. An example of a three-dimensional 
MEMS structure comprising of an upper electrode 
and a lower electrode on a silicon substrate is shown 
in Fig. 1. When a bias voltage is applied between the 
two electrodes, the upper electrode is coupled to the 
lower one by electrostatic force. A cavity provides 
the free space for the upper electrode to move. The 
challenge has been how to seal the cavity to protect 
the movable parts while preventing the sealant from 
flowing into the cavity. 

A common sealing technique for LSIs is to cover 
a bare LSI chip with plastic resin. Only connec-
tors protrude from the mold. This technique works 
because LSI chips do not have cavities. Anodic 

bonding of silicon and glass substrates has been used 
to protect MEMS structures. The drawback is that 
the bonding process requires high temperature and 
high voltage, which can damage MEMS devices. 

We have been investigating fabrication processes 
for MEMS devices, in particular, the critical pro-
cesses for film formation and patterning. Our work 
has led to the development of technology using spin-
coating film transfer and hot-pressing (STP), which 
is suitable for sealing MEMS structures that contain 
cavities.

2.   Concept of STP

In the fields of LSIs and MEMS, spin-coating and 
vapor deposition have been widely used for film for-
mation and have been applied directly to wafers. The 
underlying principle of these techniques is deposi-
tion, and it is impossible to prevent dielectric materi-
als from depositing inside cavities. The underlying 
principle of STP, on the other hand, is transfer using 
a base film as a temporary substrate, and this enables 
us to form dielectrics over cavities. 

In STP, the concept is to transfer dielectrics from 
a base film to a wafer as a substrate [2]. This is 
achieved through the procedure outlined in Fig. 2. 
First, a varnish of dielectric material is spin-coated 
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onto the base film to a thickness of � to �0 mm. In 
the spin-coating step, the varnish is spread into a 
thin film by centrifugal force to completely cover 
the base film (Fig. 2(a)). Next, the dielectric on the 
base film is hot pressed against a wafer with hol-
low structures in a vacuum (Fig. 2(b)). In this step, 

the dielectric varnish dries and hardens. Then, the 
base film is peeled off from the wafer in air at room 
temperature (Fig. 2(c)). Finally, the dielectric on the 
wafer is thermally cured. As a result, the hollows are 
sealed without the cavities being filled in.
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Fig. 2.   Concept of the STP process.
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Fig. 3.    Transfer apparatus for STP. (a) Photograph of the apparatus and schematicdiagrams of its operation  
(b) before and (c) during hot pressing.
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3.   Transfer apparatus and viscosity control for 
STP

To implement the principle and perform the pro-
cedure described above, we devised an STP transfer 
apparatus [3] because the most critical step in Fig. 
2 is the hot-pressing step, in which the shape of the 
dielectric is determined. A photograph of the trans-
fer apparatus with its chamber open is shown in Fig. 
3. The apparatus features a tension ring and hot-
pressing heaters in the vacuum chamber. 

What happens inside the transfer apparatus is 
explained with the help of schematic images in Figs. 
3(b) and (c). First, a wafer is attached face down 

to the upper heater. Next, a dielectric spin-coated 
onto a base film is set on the lower heater facing the 
wafer surface. The base film, which is transparent, 
after spin-coating is shown in Fig. 4(a). Then, the 
chamber is closed and evacuated. In the vacuum, the 
lower heater is raised using a motor. As the lower 
heater rises, the base film is uniformly stretched with 
the tension ring to remove wrinkles. After further 
elevation, the dielectric makes contact with the wafer 
surface. The position of the lower heater is then kept 
constant to apply a press force of preset magnitude 
(Fig. 3(c)). After that, the lower heater is lowered to 
its initial position. Then, the chamber is purged with 
N2 gas to atmospheric pressure. The dielectric and 
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Fig. 4.   Photographs of (a) the base film after spin-coating and (b) Si wafer after the base film was peeled off.
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Fig. 5.    (a) Schematic cross-sectional views of the shapes of the dielectrics after STP and (b) the calculated 
relationship between viscosity and press force.
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base film attached to the wafer are taken out of the 
chamber. Finally, the base film is peeled off from 
the wafer. Thus, the dielectric is transferred from the 
base film to the wafer as shown in Fig. 4(b). 

Along with the transfer apparatus, we have devel-
oped a method for controlling the shape of the 
transferred dielectrics [4]. It is necessary to control 
the shape of the dielectric film as shown in Fig. 
5(a) for planarization and sealing. The intermediate 
state is not favorable due to air pockets and bubbles. 
We speculated that the key factors determining the 
shapes of the dielectrics are the material’s viscos-
ity and the press force during the hot-pressing step. 
Since the dielectric material’s viscosity can be 
changed by drying through heating in the vacuum 
chamber, viscosity control is suitable for STP. To 
clarify the effects of viscosity on the shape, we 
devised a simple analytical model that uses the solu-
tion of the two-dimensional Poiseuille flow under 
the condition that the dielectric is incompressible 
and its amount is constant. The calculated relation-
ship between the material viscosity and press force 

is shown in Fig. 5(b). Planarization and gap-filling 
are possible when a large press force is applied to a 
soft, low-viscosity dielectric. On the other hand, we 
can seal hollow patterns when a small press force is 
applied to a hard, high-viscosity dielectric.

4.   Results for sealing characteristics

We performed film-formation experiments using 
the transfer apparatus and the control method 
described above. Images taken with a scanning elec-
tron microscope (SEM) after STP are shown in Fig. 
6. We successfully sealed hollow structures 20 µm 
deep with a 20-mm-thick dielectric (Fig. 6(a)). The 
dielectric material did not flow into the cavities. On 
the other hand, we achieved planarization of the hol-
low patterns by controlling the dielectric’s viscosity 
and the press force (Fig. 6(b)). These results confirm 
that the transfer apparatus and viscosity-control 
method are effective for STP. 

Next, we clarified the sealing characteristics by 
determining the relationship between the width of 
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Fig. 6.   Cross-sectional SEM images of (a) sealing and (b) planarization.
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the hollow pattern and the thickness of the dielec-
tric. The experimental results indicate that there is a 
region where sealing is successful, as shown in Fig. 7. 
Cross-sectional SEM images corresponding to typi-
cal conditions A to D are also shown in Fig. 7. These 
results confirm that STP is an enabling technology 
applicable for widths and thicknesses of around �0 
µm, for which conventional techniques cannot be 
used.

5.   Application to MEMS devices

Here, we explain a MEMS fingerprint sensor as 
an example of the application of STP. We fabricated 
a sensor LSI chip, as shown in Fig. 8(a) [5], [6]. 
When a finger touches the chip, the chip detects the 
fingerprint pattern. A magnified SEM image of the 
sensor surface is shown in Fig. 8(b). Square pixels 
with protrusions are arrayed in a 256 × 224 matrix 
with a pitch of 50 mm. Each pixel corresponds to a 
dot in the fingerprint image, and 57,344 pixels in 
total compose a fingerprint image. A cross-sectional 
SEM image of a pixel is shown in Fig. 8(c). 

When a finger touches the sensor surface, a pat-
tern of ridges, each several hundred micrometers 
wide, pushes down the protrusions in several pixels. 
Since there is a �-mm cavity between the upper and 
lower electrodes of the pixel in Fig. 8(c), the upper 
electrode is movable. The downward movement of 
the protrusion deforms the upper electrode, which 

increases the capacitance between the two elec-
trodes. The underlying sensing circuits detect the 
slight increase in capacitance of several femtofarads 
and output the amplified value. 

In such capacitive sensors, the capacitance 
between the electrodes is drastically affected by 
moisture in practical environments. Therefore, the 
cavities have to be sealed to ensure that the capaci-
tance is not affected by the external environment. We 
sealed the cavities with a �.5-mm-thick sealing film 
by using STP, as shown in Fig. 8(c), and achieved 
stable operation of the MEMS fingerprint sensor.

6.   Conclusion

We described spin-coating film transfer and 
hot pressing (STP) and a transfer apparatus and 
viscosity-control method suitable for it. Film-
formation experiments showed that film shape can 
be controlled for planarization and sealing. We also 
clarified the cavity sealing characteristics by inves-
tigating how the sealing depends on pattern size and 
dielectric thickness. STP was applied to the fabri-
cation of MEMS fingerprint sensors. The success-
ful sealing of the cavities protected the capacitive 
electrodes from the external environment, which 
contributed to the stable operation of the sensors. 
Therefore, STP is an enabling technology for vari-
ous kinds of MEMS devices.
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Fig. 8.    (a) Schematic image and a chip photograph. SEM images of (b) the surface and 
(c) cross-section of a pixel of the MEMS fingerprint sensor.
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