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1.   Introduction

Optical microelectromechanical systems (MEMS) 
are promising for many optical components. Three-
dimensional (3D) MEMS optical switches are 
attracting great interest as large-scale all-optical 
switching fabrics because of their great potential to 
lower cost, reduce power consumption, and provide 
compactness and high optical performance. Several 
MEMS optical switch fabrics have been reported 
and received with keen interest [�], [2]. 

The basic configuration of a 3D MEMS optical 
switch module using free-space optical interconnec-
tions is shown in Fig. 1. The module consists of a 
two-axis MEMS tilt mirror array and an optical fiber 
collimator array. There is a dedicated mirror for 
each input and each output port. Optical beams from 
input ports are collimated by the collimator array 
and reflected twice by the two-axis MEMS tilt mir-
ror. When the mirrors are tilted two-dimensionally, 
the optical beam is deflected two-dimensionally as 
well. Connection between any input port and any 
output port can be achieved by controlling the tilt 
angle of each mirror. 

The MEMS mirror array is a key functional com-

ponent of the 3D MEMS optical switch [3]. The 
characteristics of the optical switch greatly depend 
on the characteristics of the mirror array itself, such 
as flatness and reflectivity. Many types of single-
crystal silicon mirrors with good characteristics have 
been introduced [4]. However, little has been report-
ed about the methods of fabricating mirror arrays. 
We have developed practical high-yield processes for 
fabricating MEMS mirror arrays and have used them 
to build an MEMS tilt mirror array with high-aspect-
ratio torsion springs that enable reliable tilt motion. 
This paper describes the structure of our developed 
MEMS tilt-mirror array and the fabrication methods. 
It also presents experimental results for mirror tilt 
motion that indicate that the mirror array is promis-
ing for application to 3D MEMS optical switches.

2.   MEMS mirror structure

A cross-sectional schematic of the two-axis 
MEMS tilt mirror is shown in Fig. 2. The MEMS 
mirror consists of two single-crystal silicon sub-
strates: the mirror substrate and driving electrode 
substrate. These substrates are processed indepen-
dently and flip-chip bonded to each other so that an 
air gap is formed between the mirror and electrodes. 
The mirror is actuated by electrostatic force gener-
ated by applying voltage between the mirror and 
electrodes. The tilt angle of the mirror is controlled 
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by applying a driving voltage to each electrode.

2.1   Mirror substrate
SEM photographs of a two-axis MEMS tilt mir-

ror and a torsion spring are shown in Figs. 3(a) and 
(b), respectively. The MEMS mirror, which is 600 
µm in diameter, is supported by a pair of folded tor-
sion springs and connected to a gimbal ring on the 
x axis. The gimbal ring is connected to the base by 
another pair of folded torsion springs on the y axis. 
Consequently, the mirror turns on the x and y axes 
so that it can steer the optical beam in 3D space. The 
mirror and the torsion springs are made of single-
crystal silicon, which provides highly reliable mirror 
motion. The torsion springs have a high aspect ratio, 
which is defined as the ratio of spring thickness to 
spring width. These high-aspect-ratio springs have 
a large stiffness in the z direction relative to the tor-

sion direction, which prevents the mirror from being 
pulled down and contacting the electrodes.

2.2   Driving electrode substrate
An SEM photograph of the four electrodes with 

3D terraced structure is shown in Fig. 4. The mirror 
is actuated by electrostatic force generated by apply-
ing voltage to each electrode. The electrostatic force 
is inversely proportional to the square of the gap 
between the mirror and the electrode. The 3D ter-
raced electrode structure reduces the gap compared 
with the conventional flat electrode structure and 
thereby permits a low driving voltage.

3.   Fabrication methods

3.1   Mirror electrode substrate
The process flow for the mirror substrate is shown 
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Fig. 3.   SEM photograph of (a) a MEMS mirror and (b) a high-aspect torsion spring.
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in Fig. 5. First, mirror patterns are formed on a 
silicon-on-insulator (SOI) wafer by lithography and 
dry etched (Fig. 5(a)). Polyimide is then spin-coated 
over the formed mirror (Fig. 5(b)). The patterns for 
the mirror opening on the reverse bulk-Si side are 
formed (Fig. 5(c)) and then dry etched using a resist 
mask. The buried oxide (BOX) works as an etch-
ing stopper (Fig. 5(d)). The BOX is removed with 
hydrofluoric acid (Fig. 6(e)), and then polyimide 
is spin-coated again on the other side of the coated 
mirror surface (Fig. 5(f)). The polyimide protects 
the mirrors against shocks during the dicing step. 
The protective layer of polyimide is then ashed off 
by exposing it to oxygen plasma after the dicing 
process (Fig. 5(g)). Using this dry process to release 

the mirrors in this final stage prevents the so-called 
in-process stiction of the mirrors and improves pro-
cess yield. 

The flatness of the mirror surface affects the opti-
cal characteristics of the switch containing the mir-
ror arrays. Both sides of the mirror surface are coat-
ed with Au to reduce warpage of the mirror surface 
and the Au coating on the top surface also ensures 
good reflectivity. The peak-to-valley difference is 
0.05 µm, indicating a very flat mirror surface.

3.2   Driving electrode substrate
The process flow for the driving electrode sub-

strate is shown in Fig. 6. The process begins with 
thermally oxidized Si wafers. After the formation of 
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Fig. 5.   Process flow for the mirror substrate.
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the 0th level interconnection, a metal layer of Au/Ti 
is deposited by evaporation. The Ti layer acts as an 
adhesive and the Au layer as a seed for successive 
electroplating (Fig. 6(a)). Then, polyimide is spin-
coated and the electrodes and the mirror-substrate 
supports in the first layer are patterned lithographi-
cally (Fig. 6(b)). After the lithography process, Au is 
electroplated (Fig. 6(c)). In electroplating, the metal’s 
thickness varies with the area to be plated because of 
the difference in current density on the wafer. There-

fore, we designed the areas to be electroplated for 
each electrode to be as similar as possible in order to 
obtain a flat surface over the whole wafer after elec-
troplating. For this purpose, we formed the mirror-
substrate supports with a solid rectangular structure, 
as shown in Fig. 4. The flat surface is produced by 
adjusting the area to be electroplated and controlling 
the plating time. Repeating the polyimide coating, 
photolithography, and gold electroplating processes 
(Figs. 6(b) to 6(e)) yields thick-gold multilevel 
electrodes embedded in over 80 µm of polyimide 
(Fig. 6(f)). Finally, the sacrificial layer of poly-
imide is ashed away by exposure to oxygen plasma 
(Fig. 6(g)). These processes produce electrodes and 
mirror-substrate supports that are over 80 µm high, 
which ensures enough space to tilt the mirror on the 
electrodes.

4.   MEMS mirror motion

A photograph of a packaged MEMS mirror array 
with mirror substrate flip-chip bonded to the driving 
electrode substrate is shown in Fig. 7. If there is an 
alignment error in the bonding process, the centers 
of the mirror and electrodes will be misaligned, 
resulting in nonuniformity of the mirror motion 
characteristics in the tilt direction and crosstalk 
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between the tilt motion around the x and y axes. 
High alignment accuracy is required to prevent these 
problems.

The relationship between the tilt angle of the 
mirror and applied voltage is shown in Fig. 8. The 
crosstalk with tilting between rotations around the x 
and y axes is very small. This confirms the accurate 
alignment of the mirror substrate and driving elec-
trode substrate, which means that the 3D terraced 
electrodes can operate the mirror precisely.

The step responses of the tilt motion around the x 
and y axes are shown in Fig. 9. The responses coin-
cide with the damped oscillation determined by the 

designed mirror inertia and torsion spring stiffness.
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