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1.   Introduction

There is a lot of interest in visual monitoring sys-
tems to ease growing public fears. Tracking humans 
is one of the most critical aspects of visual monitoring 
because the movements of humans correlate well 
with human behavior. A human tracking system is 
expected to be useful not only for surveillance but 
also for collecting marketing data (Fig. 1).

One major problem for a practical three-dimen-
sional (3D) tracking system is that other objects in the 
environment can obstruct the camera’s view of the 
target. This phenomenon is known as occlusion. In 
practice, any tracking system should be robust when 
there are: (1) mutual occlusions caused by interacting 
targets, (2) occlusions caused by fixed objects in the 
environment, and (3) variable targets to be tracked 
representing entry to and departure from the moni-
tored area.

Many methods of tracking targets on a two-dimen-
sional (2D) image plane in these situations have been 
proposed. Methods of stably tracking multiple targets 
in the presence of occlusions caused by fixed objects 
in the scene and mutual occlusions have been report-
ed [1], [2]. To track variable interacting targets, the 

MCMC (Markov chain Monte Carlo) particle filter 
has been used [3]–[5].

Compared with the 2D approach, the 3D approach 
is more effective in accurately estimating position in 
space and is more effective for handling the above-
mentioned situations. However, few studies have 
attempted to utilize a 3D approach. 3D position has 
been estimated by integrating the tracking results on 
a 2D ground plane from multiple stereo camera mod-
ules [6], [7]. Unfortunately, if the tracking result from 
one stereo camera module is false, the whole system 
becomes unstable. 3D positions of humans in very 
cluttered environments have been tracked using mul-
tiple cameras located far from each other [8], [9]. 
However, in those studies, an ideal environment with 
no objects other than humans was assumed because 
the approaches were based on volume intersection.

The problems with the above methods mainly arise 
from the difficulty of solving the inverse problem 
(reconstructing 3D information from 2D images). To 
tackle the inverse problem, a method of tracking 
humans by directly predicting their 3D positions in a 
3D environment model and evaluating the predictions 
using 2D images from multiple cameras was investi-
gated [10]. This approach avoids the inverse problem 
because 3D information is not explicitly reconstruct-
ed. However, the computation cost is very high 
because multiple humans must be tracked by using 
several single-object trackers in parallel.
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In this article, we present a new approach to the 
stable tracking of variable interacting targets in the 
presence of severe occlusions in 3D space. We formu-
late the state of multiple targets as the union state 
space of all the targets and recursively estimate the 
multibody configuration and the position of each tar-
get in the 3D space by using the framework of trans-
dimensional MCMC [11]. In surveillance applica-
tions, environmental information is very useful 
because surveillance cameras are stationary in the 
environment. 

This article is organized as follows: Section 2 intro-
duces the 3D environment model and its application 
to tracking, Section 3 describes our tracking algo-
rithm. Section 4 describes our experiments and pres-
ents our conclusions. Future work is mentioned in 
Section 5.

2.   Our 3D environmental model

Our approach is to construct a 3D environment 
model that replicates the real-world’s 3D structure in 
advance of tracking. We use this 3D environment 

model to handle occlusions caused by fixed objects in 
environment. We also define the entry and departure 
areas in the 3D environment model to enable reliable 
estimation of the number of targets in the monitored 
area because the areas through which people enter or 
leave are definitely fixed in the environment. If we 
know about such areas, we can suppress needless 
predictions of the appearance and disappearance of 
humans.

We construct a 3D environmental model that repli-
cates the real-world’s 3D structure from the image 
sequences captured by all the cameras in the environ-
ment. We capture an image sequence and move the 
viewpoint to the position used in the tracking process. 
We use the combination of a factorization method and 
multiview stereo [12] to reconstruct dense 3D points. 
A typical image sequence is shown in Fig. 2.

After reconstructing the 3D points from all the 
cameras, we integrate all 3D points in world coordi-
nates and detect the ground plane as the plane with 
the largest area by applying the 3D Hough transform 
[13]; the 3D points are converted so that the X-Y 
plane lies on the ground. This allows us to use 2D 
coordinate values (x, y) to express the 3D positions of 
humans because human motion is strongly restricted 
to the 2D ground plane. A typical set of integrated 3D 
points is shown in Fig. 3.

Finally, the 3D surface is approximated by a trian-
gular mesh; depending on the environment, we can 
set the entrance and departure areas manually.
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Fig. 1.   Application for marketing.

Fig. 2.   Example of an image sequence.



Special Feature

� NTT Technical Review

3.   Tracking with the 3D environmental model

In this section, we introduce a multiple human 
tracking method with a 3D environmental model. 
Tracking means the sequential estimation of the state 
of multiple humans St; it represents the 3D position of 
humans in the 3D environmental model at time t. 
State St is estimated by directly predicting the 3D 
position of humans in the 3D environmental model 
and the predictions are validated by using 2D images 
from multiple cameras. In addition, we can restrict 
the predictions of the positions of humans because 
the 3D environmental model replicates the real-
world’s 3D structure and we are aware of the entrance 
and departure areas and of occlusions caused by fixed 
objects in the environment.

3.1   Handling multiple humans
We track humans using a 3D model that represents 

the human body as an ellipsoid. The state of human i 
is represented as a 4D vector Mi = (xi, yi, hi, ri), where 
(xi, yi) is the position on the 2D ground plane and (hi, 
ri) give the ellipsoid’s height and radius (this allows 
us to handle shape differences between individuals), 
as shown in Fig. 4.

The state of multiple humans is defined as the union 
state space of all the humans. Consider a system 
tracking K people in the t-th image frame. St is repre-
sented as the 4K-dimensional vector St = (M1, M2, …, 
MK).

3.2   MCMC-based tracking algorithm
The number of dimensions of the state space esti-

mates varies with the number of humans being 
tracked. To deal with this trans-dimensional state 
space, we use an estimation algorithm based on trans-
dimensional MCMC [11]. 

First, in each time step, we compute the initial state 
of the Markov chain at time t using the state of previ-
ous time St−1 according to the motion model.

After initialization, we generate B + P new samples 
by changing the current state depending on a random 
selection of move type (MCMC sampling step) to 
obtain P samples because the first B samples are 
assumed to vary widely. We use four move types: 
entry of the target into the space, departure of the 
target, update of the target’s position, and update of 
the target’s shape. We decide to accept or reject a new 
sample as a new state by computing the likelihood of 
the new sample. After B + P iterations, we compute 
state St as the maximum a posteriori (MAP) state 
using samples generated using the last P samples. 
The flow of our MCMC-based tracking algorithm is 
given below.
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(1)	 Initialize the MCMC sampler
(2)	 Perform MCMC sampling 

a)	� Select the move type randomly and generate 
a new sample

b)	 Compute the likelihood of the new sample
c)	� Decide whether to accept or reject the new 

sample by computing the acceptance ratio
(3)	 Estimate the MAP
(1)	 MCMC sampler initialization: We initialize the 

MCMC sampler at time t using the state of previous 
time St−1 according to the motion model, for which 
we use simple linear prediction. The initial state of 
the Markov chain at time t Ŝ t,0 is computed by

Ŝ t,0 = St−1 + Vt−1, � (1)

where Vt−1 is the previous velocity of the state. If the 
system tracks K humans at time t−1, vector Vt−1 has 
4K dimensions. 

(2)	 Move type: We use the following move types to 
traverse the union state space:

1)	 Target Addition (entry of a new target)
2)	 Target Removal (departure of the target) 
3)	� Position Update (update of the target’s posi-

tion)
4)	 Shape Update (update of the target’s shape)

In each iteration, one of the above move types is 
selected randomly. If the present state Ŝ t,k is null 
space, we always select Target Addition; Target 
Removal is not selected unless Ŝ t,k includes a human 
state positioned in an entrance or departure area.

a)	 Target Addition: A new human state Mn is 
added to the present state Ŝ t,k. The position of Mn is 
limited to the entrance and departure areas because 
we assume that humans cannot enter or leave except 

via these areas. We use mr, mh as the average shape 
parameters of humans. The new human state Mn is 
generated by 

Mn = (dx, dy, N(mh, sh), N(mr, sr)), � (2)

where dx, dy are white noise limited to the entrance 
and departure areas and N(mr, sr), N(mh,sh) are 
Gaussian noises with means mr, mh and variances sr, 
sh, respectively.

b)	 Target Removal: A selected human state Mi is 
removed from the present state Ŝ t,k. Target i is ran-
domly selected from the targets in the entrance and 
departure areas.

c)	 Position Update: The position parameters (xi, 
yi) of randomly selected human state Mi are updated 
by

(xi, yi) = (xi + N(0, sx), yi + N(0, sy)), � (3)

where N(0, sx), N(0, sy) Gaussian noises with mean 
0, 0 and variance sx, sy, respectively.

d)	 Shape Update: The shape parameters (hi, ri) in 
randomly selected human state Mi are updated by

(hi, ri) = (hi + N(0, sh), ri + N(0, sr)), � (4)

where N(0, sh), N(0, sr) are Gaussian noises with 
mean 0, 0 and variance sh, sr, respectively.

3)	 Likelihood of the state: The state is simulated 
by using 3D models of humans and the environment. 
We capture this scene using virtual cameras that have 
the same camera parameters as real cameras. The 
likelihood of the state is computed by comparing the 
real camera image with the corresponding virtual 
camera image. We can predict how the target will be 
occluded by objects in the environment because we 
use a full 3D model that includes the targets and the 
environment. 

A real camera image, background subtracted image, 
virtual camera image, and ellipsoid detection image 
are shown in Fig. 5. We compare the background-
subtracted image with the ellipsoid detection image 
using

V(S) = 
1

C
  

C

S
N=1

Sk, l BgN(k, l) ∩ SmN(k, l)

Sk, l BgN(k, l) ∪ SmN(k, l)  
, � (5)

where C is the number of cameras and BgN (k, l) and 
SmN (k, l) are the (k, l) pixels of the background-sub-
tracted image (as seen from camera N) and the cor-
responding ellipsoid detection image, respectively.
In addition, we introduce the following penalty func-
tions using 3D information.

a)	 Penalty based on position in the environment: 
The probability that humans are floating above the 

Fig. 5.   �Real camera image (top left), background-
subtracted image (top right),virtual image (bottom 
left), and ellipsoid-detection image (bottom right).
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floor is low, so we define penalty function E (S) based 
on the position in the environment as 

E(S) = 
K

P
i=1

 H(Mi), � (6)

where H(Mi) is 1 if the position of state Mi in the 3D 
environmental model is on the floor (not on the 
objects); otherwise, H(Mi) is 0.

b)	 Penalty based on relative distance among tar-
gets: Since multiple humans cannot occupy the same 
position, we define penalty function R (S) based on 
the relative distance among targets as 

R(S) = P
i, j

 ψ (Mi, Mj)
� (7)

ψ (Mi, Mj) = 1 − exp−λDi, j

where Di, j = (xi − xi)2 + (yi − yi)2  is the distance 

between targets i and j and λ is a threshold parame-
ter.

Finally, likelihood L is computed by

L(S) = E(S) × R(S) × V(S). � (8)

This likelihood provides efficient estimation by 
restricting the human movement to just the floor and 
preventing target conflict in 3D space. 

4)	 Acceptance ratio: We decide whether to accept 
or reject the state by using acceptance ratio a, which 
is given by

a = min(1, 
Lnew

Lold  
), � (9)

where Lold is the likelihood of the previously accepted 
state and Lnew is the likelihood of the state being con-
sidered. If a≥1, we accept the new state; otherwise, 
we accept the new state with probability a. If we 
reject the new state, we keep the current state.

5)	 MAP estimation: After repeating sampling B + 
P times, we compute state St by

St = 
1

P
  S  Ŝ t, i.
B+P

i=B
�(10)

We use only the last P samples to compute state St 
because the first B samples are assumed to vary 
widely and include different target configurations.

4.   Experiment

4.1   System and conditions
Our system consisted of a personal computer (CPU: 

AMD Athlon 64 × 2 4800+) and two color CCD cam-
eras (FLEA made by Point Grey Research). Each 
captured image had a resolution of 640 × 480. The 
intrinsic and extrinsic camera parameters were esti-
mated in advance. In this experiment, the number of 
iterations B + P was set to 300. For MAP estimation, 
we use the last P=100 samples. The system ran at 5 
frames per second in this non-optimized implementa-
tion. The images from the cameras are shown in Fig. 
6 and a bird’s eye view of the experimental environ-
ment is shown in Fig. 7. We defined the shaded region 
in Fig. 7 as the entrance/departure area.

Fig. 6.   Images from the two cameras.
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Fig. 7.   Experimental environment.
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4.2   Multiple human tracking
To evaluate the basic tracking performance of our 

system, we used an image sequence in which three 
humans entered and left the monitored area at differ-
ent times (sequence #1).

The images selected from the monitoring results of 
sequence #1 are shown in Fig. 8. Our system could 
correctly capture the movements of the three humans. 
In the 268th frame, most of one subject’s body was 
occluded by a shelf, and in the 305th frame, two 
humans completely overlapped. Even under these 
severe occlusions, the tracking error was not signifi-
cant as a result of our use of the entrance/departure 
area constraint.

The trajectories on the X-Y plane overlaid by 
reconstructed 3D points are shown in Fig. 9. The 
continuation of trajectories even in the case of severe 
occlusions caused by fixed objects in the environment 
and mutual occlusions demonstrates the robustness of 
our system to occlusions.

4.3   Evaluation of the tracked position
For a rough evaluation of the position tracked by 

the system, we used an image sequence in which a 
subject walked around a prearranged route (sequence 
#2). We compared the estimated motion trajectory 
with the actual trajectory on the ground (ground truth 
trajectory). The estimated motion trajectory and the 
ground truth trajectory on the X-Y plane overlaid by 
3D points are shown in Fig. 10. The estimated and 
ground truth trajectories are very close, so this result 
confirms that our system offers high accuracy. The 
mean and maximum errors of the estimated distance 
were 4.86 and 29.43 cm, respectively.

5.   Conclusions and future work

In this article, we introduced a 3D human tracking 
system that can track variable interacting targets in 
the presence of severe occlusions caused by both 
fixed objects in the environment and target move-
ment. The next step is to extend the system to cope 
with crowded scenes, which we expect to be fairly 
difficult. Evaluations of such systems should lead to 
a better system design in terms of factors such as 
camera locations.

144th frame 197th frame 268th frame

288th frame 305th frame 326th frame

403rd frame 458th frame 471st frame

Fig. 8.   �Estimation results (images) of sequence #1. Top 
row: real camera image. Middle row: estimated 
virtual camera image. Bottom row: bird’s eye view 
of estimated virtual camera image.
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