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1.   Introduction

Digital signatures have been a central research sub-
ject in cryptography and are widely used these days. 
Among the many theoretical issues to pursue, effi-
ciency is of great concern in practice. It is typically 
measured by the size of the public key and the signa-
tures and by the computational cost for signature 
generation and verification. This paper focuses on 
efficient digital signature schemes that yield short 
signatures.

A digital signature scheme yields either a digital 
signature with an appendix or with messa e recovery. 
In the former case, a signed message looks like (σ, 
ms ), where σ is the signature and ms  is the mes-
sage. Given (σ, ms ), the verifier can determine 
whether σ is a correct signature that guarantees the 
authenticity and integrity of message ms . Naturally, 
the length of a signed message is the sum of the 
length of the message and the signature. In the latter 
case, a signed message is like (σ, n), where n is part 
of the message. The remaining part of the message is 
contained in signature σ, and anyone can recover the 
entire message. Because of this structure, one can 
expect a signed message to be shorter than a message 
in the case of a signature with appendix.

Typically, a message recovery signature proceeds 
as follows. The signer adds some redundancy to the 
message to sign it. This produces a signed message 
(σ, n). To verify the signed message, the verifier first 
recovers the entire message ms  and then checks 
whether the recovered message has the correct redun-
dancy. All that is required to recover the message is 
the public key, so anyone can do it. Furthermore, 
every random string (σ, n) will yield a string that 
looks like a redundant message (but is actually a ran-
dom meaningless one). Accordingly, it is essential to 
choose redundancy that cannot be easily satisfied by 
the message recovered from forged (σ, n).

However, there are many message recovery signa-
ture schemes in the literature that do not specify or 
even characterize the necessary properties of the 
redundancy that makes the signature scheme proven 
secure. For RSA (Rivest, Shamir, and Adleman) sig-
natures, there are some redundancy functions (also 
known as the padding method) such as PSS-R [1] that 
eventually achieves security against adaptive chosen 
message attacks [2] in the random oracle model [3]. 
In [4]–[6], Nyberg and Rouppel presented message 
recovery signature schemes whose security is based 
on the discrete-log problem, but no specific redun-
dancy function was given, so its security is unclear. It 
was followed by some similar schemes, e.g., [7], also 
without specific redundancy functions. In [8], Abe 
and Okamoto presented a message recovery version 
of the Schnorr signature scheme [9] with a specific 

Selected Papers: Research Activities in Laboratories	 of New Fellows Part II

Message Recovery Signature Schemes from 
Sigma-protocols
Masayuki Abe†, Tatsuaki Okamoto, and Koutarou Suzuki
Abstract

This paper presents a framework for constructing message recovery signature schemes from sigma-
protocols. The heart of our construction is a redundancy function that adds some redundancy to a 
message that only a legitimately signed and recovered message can have. We characterize redundancy 
functions that make the resulting message recovery signature scheme proven secure. Our framework 
includes known schemes when the building blocks are given concrete implementations, so it presents 
insightful explanation into their structure.

†	 NTT Information Sharing Platform Laboratories
	 Musashino-shi, 180-8585 Japan
	 Email: abe.masayuki@lab.ntt.co.jp



Vol. 6 No. 1 Jan. 2008 ��

redundancy using random oracles but with a very 
complicated security analysis that results in a high 
cost for reduction to the discrete logarithm problem. 
In [10], Naccache and Stern constructed a message 
recovery signature scheme from DSA [11] with char-
acterization of sufficient redundancy. Pintsov and 
Vanstone presented a message recovery version of the 
Schnorr signature scheme whose security is proven in 
the ideal cipher model, which is known as the ECPV 
scheme [12], [13]. Many of these schemes are includ-
ed in international standards such as [14].

The Fiat-Shamir transform [15] is a well-known 
methodology for obtaining a secure digital signature 
scheme. It converts a sigma-protocol [16], [17] into a 
secure signature scheme in the random oracle model. 
A sigma-protocol is a two-party protocol where a 
prover interacts with a verifier to convince him that 
the prover knows a secret, which is often understood 
as a secret key corresponding to a public key, without 
leaking anything about the secret. More precisely, it 
is a public-coin three-round honest verifier zero-
knowledge proof system that has special soundness 
and special honest verifier zero-knowledge. Such 
protocols are often used for interactive authentica-
tion. The Fiat-Shamir transform can be used to elimi-
nate the interaction and enable the prover alone to 
create a transcript of the execution of the sigma-pro-
tocol so that it can act as evidence of his knowledge 
about the secret, like the interactive version. When an 
arbitrary message is bound to the transcript, one can 
see that only the person who knows the secret can 
create the transcript with the message. Thus, it works 
as a digital signature with appendix. However, it is 
not known whether such a technique is also useful for 
designing digital signature schemes with message 
recovery.

In this paper, we present a framework for construct-
ing message recovery signature schemes from sigma-
protocols. Our results show how to securely convo-
lute part of a document into a message used in the 
sigma-protocol by using a redundancy function and 
eventually turn the sigma-protocol into a message 
recovery signature scheme that is adaptively chosen 
message secure in the random oracle model.

Importantly, we characterize the redundancy func-
tion that is sufficient to make the resulting message 
recovery signature scheme proven secure in the ran-
dom oracle model. We then show two instantiations 
of the redundancy function that conforms to our 
requirements based on the random oracle model and 
the ideal cipher model. At 80-bit security with typical 
parameter settings, both instantiations shorten the 

signed message by 80 bits. Our framework yields 
known schemes, ECPV in particular, when the build-
ing blocks are given concrete implementations; 
hence, it presents insightful explanation into their 
structure.

2.   Preliminaries

2.1   Notation
We consider uniform probabilistic algorithms (i.e., 

Turing machines) that take as input (the unary encod-
ing of) a security parameter λ ∈  and possibly other 
inputs and run in deterministic polynomial time in λ. 
We thus always implicitly require the size of the input 
to be bounded by some polynomial in λ. Adversarial 
behavior is modeled by non-uniform polynomial-
time probabilistic algorithms, i.e., by algorithms that 
together with the security parameter λ also get a poly-
nomial-sized auxiliary input au  λ. To simplify the 
notation, we usually let the dependency on λ (and on 
au  λ) remain implicit. By ( ), we denote the output 
distribution of a probabilistic algorithm  with input 
 and uniformly chosen randomness. By  ← ( ), 

we mean that algorithm  is executed on input  and 
the output is assigned to . We may also denote it as 
 ← ( ; r) when the randomness r is to be explicitly 

noted. For any algorithm , the output domain of  
is denoted by Dom( ). Similarly, for any finite set S, 
we use the notation  ← S to denote that  is sampled 
uniformly from S, and  ←  means that the value  
is assigned to . By BitLen(S), we denote the number 
of bits used to present the largest element in S.

|X| is used in different ways. If X is a set, |X| denotes 
the cardinality of X. If X is a distribution or an algo-
rithm, |X| denotes the number of elements in X with 
nonzero probability. If X is a variable whose actual 
value is taken from some range, |X| denotes the num-
ber of bits needed to present the maximum value in 
the range. (Hence, |X| does not necessarily equal 
[log2 X] for the actual value assigned to X.) Finally, if 
X is a string, |X| is the number of bits needed to pres-
ent the string.

We use X := Y to define a new variable X with Y. For 
any two strings a and b, a||b denotes a string that 
concatenates a and b in order. By a||b ← c, we denote 
that string c is separated into two parts and assigned 
to a and b. The manner of separation depends on the 
context but may not be explicitly given when it is 
clear from the context.

P[  = ( )] denotes the probability (taken over a 
uniformly distributed random tape) that  outputs  
on input , and we write P[  ← : ( ) = ] for the 
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(average) probability that  outputs  on input  
when  is output by : P[  ← : ( ) = ] =   P[  
= ( )]P[  = ]. We also use natural self-explanatory 
extensions of this notation.

An oracle algorithm  is an algorithm in the above 
sense connected to an oracle in that it can write on its 
own tape an input for the oracle and tell the oracle to 
execute it. Then, in a single step, the oracle processes 
this input in the prescribed way and writes its output 
on the tape. We write  when we consider  to be 
connected to the particular oracle .

As is common practice, a value v(λ)∈R, which 
depends on the security parameter λ, is treated as 
negli ible, denoted by v(λ) ≤ ne l(λ) or v ≤ ne l, if 
c > 0  λ′∈   λ ≥ λ′: v(λ) < 1/ λc.

2.2   Sigma-protocol
Let L⊂{0, 1}* be a language and RL be a binary 

relation associated with L. Let WL( ) for  ∈L denote 
a set of witnesses for , i.e., WL( ) = { |RL ( , ) = 
1}. Let  be an instance generator for L that takes 
security parameter λ and chooses an instance  ∈L 
and a witness  ∈WL( ) with restriction | | = λ. A 
sigma-protocol for language L is an honest verifier 
zero-knowledge proof system that consists of (proba-
bilistic) polynomial-time algorithms (A, C, Z, V, E, 
M). These algorithms work as follows.

For ( , ) ← (λ), the verifier is given  and the 
prover is given ( , ). The prover first sends the first 
message a ← A( ; t) to the verifier and the verifier 
challenges the prover by returning c ← C( ). The 
prover answers the challenge by sending z ← Z( , t, 
c) to the verifier. The verifier accepts if a = V( , c, z). 
(More generally, V can be an algorithm that takes (a, 
, c, z) as input and returns 1 or 0 to report acceptance 

and rejection. Note, however, that it is essential for 
our purpose that a can be computed from ( , c, z) in 
polynomial time.) We assume perfect correctness, 
where the verifier accepts with probability 1 when 
both the prover and verifier are honest.

A sigma-protocol features special soundness. That 
is, there exists a deterministic polynomial-time algo-
rithm E, called an extractor, that takes two acceptable 
transcripts with the same first message and different 
challenges, say ( , a, c, z) and ( , a, c′, z′) such that  
∈L, c ≠ c′, V( , c, z) = V( , c′, z′) = a as input and 
outputs a witness  for  with probability 1 in poly-
nomial time.

A sigma-protocol is honest verifier zero-knowled e. 
Namely, we assume that there exists a polynomial-
time algorithm called a simulator, denoted by M, that 
takes  ∈L and c ← C( ) as input and outputs (a, z) 

such that the distribution of simulated (a, c, z) is iden-
tical to the distribution of the real transcript generated 
by the honest prover and verifier.

A note on relaxation. We can allow a small error 
probability in the correctness but the resulting signa-
ture scheme inherits the error probability in its cor-
rectness. Similarly, E can be a probabilistic algorithm 
with negligible error probability. Also, the quality of 
zero-knowledge simulator M can be relaxed to statis-
tical or computational rather than perfect. These 
relaxations affect the unforgeability of the resulting 
signature scheme.

2.3   �Security model of message recovery signature 
scheme

To define the security precisely, we first must pres-
ent a syntactical definition of message recovery sig-
nature schemes. The one shown below is a very 
standard definition, which can be seamlessly turned 
into the definition of ordinary signature schemes with 
appendix by letting the non-recoverable message n be 
the same as the entire message ms .

Definition 1.  (Message recovery signature scheme) 
A message recovery signature scheme consists of 
three probabilistic polynomial-time algorithms ( , 

, ).
– �  is a key generation algorithm that takes security 

parameter λ and outputs a public-key pk and a 
private-key sk. Associated with pk is a recover-
able message space {0, 1} rec.

– �  is a signature-issuing algorithm that takes a 
private-key sk and a message ms  and outputs a 
signature σ and the non-recoverable part of the 
message n.

– �  is a verification protocol that takes a public key 
pk and a signed message (σ, n) and outputs 
( , ms ) or . It is required that ( , 
ms ) = (pk, (sk, ms )) for any pk and sk gener-
ated by  and for any ms .

A message recovery signature scheme is secure if it 
withstands an adversary that asks a legitimate signer 
to sign arbitrary messages and then attempts to forge 
a valid signed message never signed by the signer. 
Formal definition of such a chosen message adver-
sary follows.

Definition 2.  (Chosen message adversary) A ( sig, 
sig, qs, qh) chosen message adversary Asig against the 

above message recovery signature scheme is an ora-
cle Turing machine that launches a chosen message 
attack that consists of the following steps.

1.	(pk, sk) ← (λ)
2.	(σ̃, ñ ) ← A ,

sig (pk)
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 is the signing oracle such that, for every signing 
query for a message, say ms i, it returns a legitimate-
ly generated signed message (σ i, ni) by using private 
key sk.  is the random oracle that corresponds to 
hash function H in the signature scheme. Let T denote 
the signed messages (σ i, ni) observed by . The final 
output of Asig must satisfy (σ̃, ñ ) ∉ T. Asig makes at 
most qs queries to  and at most qh queries to  and 
then stops within running time sig. Then, (pk, σ̃, ñ ) 
outputs ( , ms ) for some ms  with probability 
at least sig. The probability is taken over all the ran-
dom coins used in the chosen message attack.

3.   Our construction

3.1   Redundancy function
The heart of our construction is the redundancy 

function, say ∆: Dom(A) × {0, 1} rec → D, that takes 
the first message a of the underlying sigma-protocol 
and a recoverable part of the message m and outputs 
a redundant message r in some specific domain D. 
More precisely, we assume a family of functions ∆λ = 
{∆} and its ensemble {∆λ}λ∈  that satisfy the follow-
ing properties.

1.	�(Invertibility) For every ∆, there exists an inverse 
function ∆−1 that, given (a, r), outputs m. It is 
required that m = ∆−1(a, ∆(a, m)).

2.	�(Compactness) BitLen(Dom(A)) + rec ≥ 
BitLen(D).

3.	�(Randomness) For every ∆ and every m, the dis-
tribution of ∆(a, m) for uniformly chosen a is 
uniform.

4.	�(Collision resistance) Given ∆ ← ∆λ, any proba-
bilistic algorithm running within time  finds (a, 
m) and (a′, m′) such that ∆(a, m) = ∆(a′, m′) and 
(a, m) ≠ (a′, m′) only with probability, say ∆

coll( ), 
which is negligible in λ if  is polynomial in λ.

Invertibility is needed for our construction to work. 
Compactness is needed for the message recovery 
property to be meaningful. Without this property, the 
signed message of the resulting message recovery 
signature scheme would be longer than the one from 
the signature scheme with appendix. Randomness 
and collision resistance are needed for unforgeability 
of the resulting signature scheme.

One can relax the randomness property to be com-
putationally indistinguishable from uniform. This 
will affect the unforgeability of the resulting signa-
ture scheme, as we mention later. 

As we shall see in Section 4. ∆
coll( ) may take some 

other parameters such as the maximum number of 
oracle queries, depending on its construction.

3.2   Our scheme
Given a sigma-protocol (A, C, Z, V, E, M) for  and 

a hash function H, we construct a message recovery 
signature scheme ( , , ) as follows.

– �(Key generation: ) Given λ, run ( , ) ← (λ) 
and output  as a public key and  as a private 
key. Security parameter λ also determines the 
length of the recoverable part rec and the redun-
dancy function ∆.

– �(Signature generation: ) Given private key  and 
message ms , first chop ms  as ms  = m||n so that 
m∈ {0, 1} rec. Then, compute a ← A( ; t), r ← 
∆(a, m), c ← H(r, n), and z ← Z( , t, c). Then, 
output (r, z, n) as a signed message.

– �(Signature verification: ) Given  and (r, z, n), 
compute c ← H(r, n), a ← V( , c, z), and m ← 
∆−1(a, r). If r ← ∆(a, m), output ( , m||n). 
Otherwise, output .

Implementation note. Depending on the specific 
structure of function ∆, the signature verification can 
be more efficient than recomputing ∆. See also Sub-
sections 4.1 and 4.2.

3.3   Proof of security
Theorem 1. (Security against chosen message 

attacks) If there exists ( sig, sig, qs, qh)-adversary Asig 
for the message recovery signature scheme based on 
language L and an instance generator , then there 
exists a ( , ) witness extraction adversary A , 

where  ≤ 8 sim /,( sig − 4 qsqh

|D|
)

and  ≥ 9
100  

. 1
qh  

(1 − 1
|C|

) (1 − ∆, 
coll

sim).

Here, sim is sig + qsTsig, where Tsig is the sum of the 

running times of C, M, and ∆, and ∆, 
coll

sim is ( sig

2  − 

qsqh

|D|
) −1

∆
coll (2 sim).

Proof. This is proved by constructing A  from Asig 
using a forking lemma in a standard manner. Let  ∈L 
be an instance generated by (λ). Given  as input, 
A  works as follows.

1.	�Invoke Asig with  as a public key and a uni-
formly chosen random tape. If Asig terminates 
with a valid signed message (r̃, z̃, ñ ), proceed to 
the next step. Otherwise, repeat this step with the 
same  and a fresh random tape up to t1 times. 
Abort if never successful. Oracle queries are 
handled as follows. 

– �(Query ms i to .) Execute ci ← C( ) and (ai, zi) 
← M( , ci). Then, chop ms i into mi||ni, compute 
ri ← ∆(ai, mi), and define H so that ci = H(ri, ni). 



If H has already been defined for such an input, 
abort. Otherwise, return (ri, zi, ni) as a signed mes-
sage.

– �(Query (rj, nj) to .) If the input is fresh, select cj 
uniformly, define H as cj = H(rj, nj), and return cj. 
Otherwise, return the preliminarily defined 
value.

2.	�Let i* denote the index that  is asked (r̃, ñ ). That 
is, ri* = r̃, ni* = ñ, and ci* = H(r̃, ñ). Let ã denote ã 
← V( , ci*, z̃). Move to the next step.

3.	�Invoke Asig with  and the random tape used in 
the successful run of the first step. The simula-
tion for oracle  is unchanged. Oracle  is simu-
lated identically up to the point that (r̃, ñ ) is 
asked. From that moment,  is simulated with 
new randomness. If Asig terminates with a valid 
signed message (r̃, z̃′, ñ ), then proceed to the next 
step. Otherwise, repeat this step up to t2 times. 
Abort if never successful.

4.	�Let ci*′ = H(r̃, ñ ), which was observed in the sec-
ond step, and let ã′ be ã′ ← V( , ci*′ , zz̃′). If ci* = 
ci*′  or ã ≠ ã′, abort. Otherwise, compute  ← 
E( , ã, ci*, zz̃, ci*′ , zz̃′) and output .

Now we estimate the running time and the proba-
bility of success of A . First, the success probability 
is estimated as follows.

– �First, we estimate the error probability of the 
oracle simulation. Observe that the simulation of 

 fails only if (ri, ni) has already been defined for 
H. Since the distribution of ni is arbitrarily deter-
mined by the adversary, we consider only the 
sufficient condition that ri has appeared so far.

Suppose that ri is uniformly chosen from D. Then, 
the probability that ri has appeared among the inputs 
to H is at most qh/|D|.

Next consider ri generated through ∆ from uni-
formly chosen ai. Since we assume that the distribu-
tion of the output of ∆ is uniform, the above probabil-
ity does not change at all. (This is where the relax-
ation of randomness on ∆ would have an effect. If the 
randomness is not perfect but just indistinguishable 
with some advantage, say ∆

dist( ) for a polynomial-
time distinguisher whose running time is , then the 
error probability of the simulation increases by 
∆
dist( sim).)
Then, consider ai generated by M. As in the previ-

ous step, since the distribution of such ai is perfectly 
the same as uniform, the error probability does not 
change at all, either. (Again, this is where the relax-
ation on the zero-knowledge property of the underly-
ing sigma-protocol matters. If the zero-knowledge 
simulation is only computational with some advan-

tage, say at most zk( ) for a distinguisher whose run-
ning time is , then the error probability increases by  
zk( sim) .)
Therefore, the probability serr that the simulation 

fails while handling qs queries is bound as

serr ≤ 1 − (1 − qh

|D|
 )qs ≤ qsqh

|D|
. � (1)

The simulation of random oracle  is obviously 
perfect unless the simulation of  fails.

– �The success probability of Asig for fixed  is at 
least sig/2 with probability 1/2 (over the choice of 
) due to the heavy-row lemma of [15], [18]. With 

the simulated signing oracle, the success proba-
bility reduces to sig/2 − serr. Accordingly, every 
run of Asig in the first step is successful with prob-
ability at least m1: = ( sig/2 − serr). By repeating 
the attempt up to t1: = 1/m1 times, we get at least 
one valid (r̃, z̃, ñ ) at the end of the first step with 
probability greater than 1 ≥ 1 − (1 − m1)1/m1 ≥ 1 − 
e−1 ≥ 3/5. Let * denote the randomness used for 
simulating the random oracle for the i*-th and all 
subsequent queries in the successful run. Let  
denote all other randomness also used in the suc-
cessful run.

– �Over the choice of *, the success probability of 
Asig for fixed  and  is at least sig/4 with proba-
bility 1/2 (over the choice of ) due to the heavy-
row lemma again. If we apply the same argument 
as in the first step, each attempt in the third step is 
successful with probability at least m2: = sig/4 − 
serr. If we repeat this attempt up to t2: = 1/m 2 

times, another valid signed message (r̃ ′, z̃′, ñ′) is 
obtained with probability greater than 2 ≥ 1 − (1 
− m2)1/m2 ≥ 1 − e−1 ≥ 3/5. Furthermore, the out-
come corresponds to the i*-th query to H, i.e., r̃ ′ 
= r̃  and ñ′ = ñ, with probability at least 1/qh.

– �In the fourth step, ci* = ci*′  happens only with prob-
ability 1/|C|. Observe that, if ã  ≠ ã′, then we have 
r̃ = ∆(ã, ∆−1(ã, r̃)) = ∆(ã′, ∆−1(ã′, r̃)) which is a 
collision. Let ∆, 

coll
sim denote the probability of such 

an event occurring. Since the running time of A  
is less than  = (t1 + t2) sim, ∆, 

coll
sim can be upper 

bounded by ∆
coll( ). It is, however, an overesti-

mation. More precise estimation of the probabil-
ity is at most

∆, 
coll

sim = t1 . ∆
coll(2 sim) � (2)

because we have at most t1 trials for an independent 
choice of ∆, and the particular ∆ chosen in the suc-
cessful run in the first step is executed again in the 
third step of the simulation and the total running time 
with this particular ∆ is 2 sim.
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By summing up the above assessment, we get the 
total success probability of A  as

 ≥ 1
2

 . 3
5

 . 1
2

 . 3
5

 . 1
qh

 (1 − 1
|C|

) (1 − ∆, 
coll

sim)						�      (3)

≥ 9
100

 . 1
qh

 (1 − 1
|C|

) (1 − ∆, 
coll

sim).						�      (4)

Assuming that the time for generating randomness 
and table searching used for simulating H is free, the 
running time is 

 ≤ (t1 + t2) . sim � (5)

≤ (1/( sig/2 − serr) + 1/( sig/4 − serr)) . sim � (6)

≤ 8 sim /( sig − 4 qsqh

|D|
) � (7)

4.   Construction of ∆

4.1   In the random oracle model
We construct ∆ and ∆−1 as follows.

∆(a, m) = h1||h2, where h1 = H1(a, m) and h2 
= m ⊕ H2(a, h1)

						�      (8)

∆−1(a, h1||h2 ) = h2 ⊕ H2(a, h1) � (9)

H1: {0, 1}* → {0, 1} 1 and H2: {0, 1}* → {0, 1} rec 
are hash functions modeled as independent random 
oracles. 

To make the message recovery property meaning-
ful, 1 < |a| should hold. Note that, as we shall show 
in Lemma 2, setting rec too short would cause a secu-
rity problem, i.e., it would result in a high probability 
of collision. Recommendable settings of 1 and rec 
are 1 = rec = |a|/2 to balance security and the benefit 
of message recovery. If one would like the length of 
the recoverable part to vary depending on the given 
message, the message must be polynomially long or 
some kind of padding must be applied so that the total 
length becomes polynomial in λ.

With the above instantiation, the verification proce-
dure specified in Subsection 3.2 can be slightly more 
efficient. The modified signature verification proce-
dure is as follows.

– �(Signature verification: ) Given  and (r, z, n), 
compute c ← H(r, n), a ← V( , c, z), and m ← 
∆−1(a, r). Then, let h1||h2 ← r. If h1 = H1(a, m), 
output ( , m||n). Otherwise, output .

Namely, it replaces the testing r = ∆(a, m) with h1 = 
H1(a, m) and saves one computation of H2.

The above ∆ satisfies the required properties listed 
in Subsection 3.1. Specifically, the following lemmas 
hold. The first three (invertibility, compactness, and 
randomness) are trivial and the last one (collision 
resistance) is followed by a detailed proof.

Lemma 1. (Invertibility, compactness, and ran-
domness) The above ∆ is invertible. In particular, the 
above ∆−1 is the inverse function. It is compact when 

1 is set so that BitLen(Dom(A)) ≥ 1. The output dis-
tribution of ∆ is uniform over {0, 1} 1+ rec if H1 and 
H2 are independent random oracles.

Lemma 2. (Collision resistance) If 1 and rec are 
polynomial in λ, the above ∆ is collision resistant 
against polynomial-time adversaries that make a 
polynomial number of queries to H1 and H2. In par-
ticular, for any adversary asking q1 and q2 queries to 
H1 and H2, respectively, the probability of collision is 

upper bounded by ∆
coll(q1, q2) ≤ q1

2 1+  rec
 + q1

2 1
 + 

q1q2

2 1+ rec
 + q1

2 1+ rec
. + q1q2

22 1
. 

Proof. (of Lemma 2) We refine the notation for the 
input and output of H1 and H2 as follows. Let hi = 
H1(Ri, Mi) and cj = H2(Dj, ej) denote the i-th and j-th 
input/output of H1 and H2, respectively. We first 
define the notation and some terminology. Let L1 

denote the set of queries and answers for H1, i.e., L1  
= {(Ri, Mi, hi)|i = 1, ..., q1}. Define L2 = {(Dj, ej, cj)| j 
= 1, ..., q2} as well. Without loss of generality, we 
assume that every query is fresh, so every entry in L1  
and L2 is unique. By (i, j), we denote a set that con-
sists of the i-th entry of L1  and the j-th one of L2, i.e., 
(i, j) = (Ri, Mi, hi, Dj, ej, cj). We say that (i, j) is fully 
consistent if (Ri, hi) = (Dj, ej). Note that if (i, j) is fully 
consistent, it forms a correct computation of ∆. By 
FullCon (i, j) =  or , we mean that (i, j) is or 
is not fully consistent, respectively. We also say that 
(i, j) is semi-consistent if Ri = Dj. A semi-consistent 
(i, j) may also be fully consistent but this is not neces-
sary. By SemiCon(i, j) =  or , we mean that 
(i, j) is or is not semi-consistent, respectively. Let 
(Hb, i) for b ∈1, 2 denote the time at which the i-th 

query is made to Hb. (It can be understood as the 
number of steps before the i-th query is made to ora-
cle H1). Since no more than one query can be made at 
one step, (Hb, i) is strictly larger or smaller than 
(Hb′, i′) if i ≠ i′. We say that (i, j) is regular if (H1, i) 

< (H2, j); otherwise, it is irregular. The intuition 
behind this terminology is that anyone who computes 
∆ correctly should ask H1 first and then H2 in that 
order. Therefore, a normal computation of ∆ yields 
regular and fully consistent (i, j). By Regular(i, j) = 
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 or , we mean that (i, j) is regular or irregular, 
respectively. We define function X(i, j) as X(i, j) = cj 
⊕ Mi.

With this terminology, we can say that a collision 
∆(Ri, Mi) = ∆(Ru, Mu) happens if and only if there 
exist j and  such that

– (i, j) ≠ (u, ),
– FullCon(i, j) = FullCon(u, ) = , and
– hi||X(i, j) = hu||X(u, ).
Accordingly, we say that (i, j) and (u, ) collide if 

and only if the above conditions are satisfied. By 
Collision(i, j, u, ) =  or , we mean (i, j) and 
(u, ) do or do not collide, respectively.

We classify entries in L2 by the value of ej. Namely, 
for every different value of ej in L2, we consider a set 
of indexes { |e  = ej} and label such sets as Class1, 
Class2, .... In this way, every entry in L2 is associated 
with one class. Obviously, there are at most q2 class-
es. Let SameClass( j, ) be  if and only if j and  
are in the same class, i.e., ej = e .

The above definitions lead simply to some facts.
Fact 1. If SameClass( j, ) = , then Collision(i, 

j, u, ) = .
If two consistent (i, j) and (u, ) are in different 

classes, then hi = ej ≠ e  = hu holds and they cannot 
collide. Moreover, if either of them is inconsistent, it 
cannot have a collision, either. Therefore, we con-
sider the possibility of collision only within a class. 

Fact 2. |{(i, j)|FullCon(i, j) = }| ≤ q1.
Namely, there are at most q1 pairs of fully consis-

tent queries. Suppose that (i, j) is fully consistent and 
(i, j′) is also fully consistent for some j′. Then, ej = hi 
= ej′ and Dj = Ri = Dj′ holds, and it means that the j-th 
and j′-th queries to H2 are identical, whereas we 
assumed that L2 contains no duplicate entries.

Fact 3. |{(i, j)|SemiCon(i, j) = ,  j ∈Classk}| ≤ 
q1 for every Classk.

Namely, there are at most q1 semi-consistent pairs 
of queries with regard to each class of L2. Suppose 
that (i, j) and (i, j′) are both semi-consistent and j and 
j′ are in the same class. We then have Dj = Ri = Dj′ and 
ej = ej′. Hence, the j-th and j′-th entries in L2 are iden-
tical.

Suppose that (i, j) and (u, ) are both semi-consis-
tent and they are in the same class. These queries can 
collide. (On the other hand, if either of them is not 
semi-consistent or if they are in different classes, they 
cannot collide.) Regarding the regularity of (i, j) and 
(u, ), one of the following cases must be true.

Case 1.	Both are regular.
Case 2.	 One is regular and the other is irregular.
Case 3.	 Both are irregular.

A pair of regular queries, say (i, j), is either fully 
consistent (the case where (Ri, hi) is the input (Di, ei) 
to H2) or inconsistent (something else is given as 
input to H2). These cases are independent of the 
choice of the randomness of H1 and H2. If (i, j) is 
regular but inconsistent, there is no chance of it caus-
ing a collision with another pair of queries. Hence, we 
only need to consider fully consistent queries in the 
regular case. Below, we consider the probability of 
collision in each of the above cases.

Case 1.	Consider regular and fully consistent que-
ries (i, j) and (u, ) in the same class. For a collision 
to occur, hi = hu and cj ⊕ Mi = c  ⊕ Mu are necessary. 
First of all, hi = hu happens with probability at most 
1

2 1
 because both hi and hu are uniformly chosen as a 

result of the true randomness of H1 and H2. Next, 
consider cj ⊕ Mi = c  ⊕ Mu. Since (i, j) and (u, ) are 
regular, (Mi) < (cj) and (Mu) < (c ) hold. There-
fore, at least one of cj and c  is independent of Mi and 
Mu. Since both cj and c  are chosen uniformly, cj ⊕ Mi 

= c  ⊕ Mu holds with probability at most 1
2 rec

. Thus, 

(i, j) and (u, ) collide with probability at most 1
2 1+  rec

. 

Let FullCon(Classk) denote the number of fully con-
sistent queries in Classk. By summing up the proba-
bility for all the classes and applying Fact 2, we get

Pr[Case 1] ≤ 
k  

 FullCon(Classk)2

2 1+  rec
 ≤ q1

2

2 1+  rec
.

					�      (10)

Case 2.	For every entry i in L1, there exists at most 
one entry, say j, in each class of L2 such that (i, j) is 
semi-consistent. (If there exists j′ in the same class 
such that (i, j′) is semi-consistent, then j = j′ because 
Ri = Dj = Dj′ and ej = ej′.) We consider the probability 
that the semi-consistent (i, j) in the class is irregular 
and collides with a regular and fully consistent (u, ) 
in the same class. First of all, (i, j) must be fully con-
sistent to have a collision. Therefore, it must satisfy hi 
= ej when hi is randomly and independently chosen, 

which in turn happens with probability at most 1
2 1

. 

Second, cj ⊕ Mi = c  ⊕ Mu must hold. Since (i, j) is 
irregular, however, Mi can be set after the values of cj, 
c , and Mu have been seen, and this condition can be 
satisfied with probability 1 by setting Mi as Mi = cj ⊕ 
c  ⊕ Mu. Note that there is only one regular and fully 
consistent (u, ) in the class that causes cj ⊕ Mi = c  
⊕ Mu with (i, j). Otherwise, there would exist another 
regular and fully consistent (u′, ′) in the same class 
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and it would cause cj ⊕ Mi = c ′ ⊕ Mu′. Then, (u, , u′, 
′) would have a collision. This has already been 

treated in Case 1.
One question is whether or not such a manipulated 

Mi can also be a candidate for a collision in other 
classes. We claim that if (i, j) in Classk has (u, ) in 
Classk that satisfies cj ⊕ Mi = c  ⊕ Mu, then (i, j′) in 
Classk′ has (u′, ′) in Classk′ that also causes cj′ ⊕ Mi 

= c ′ ⊕ Mu′ only with probability 1
2 rec

. (Naturally, we 

suppose (i, j′) is irregular and semi-consistent and (u′, 
′) is regular and fully consistent so they fall into Case 

2.) This happens only if

cj ⊕ c  ⊕ Mu = cj′ ⊕ c ′ ⊕ Mu′. �(11)

Since (u, ) and (u′, ′) are regular, all cj c  ⊕ Mu cj′, 
and c ′ ⊕ Mu′ are random and independent of each 
other. Hence, Eq.(11) is satisfied only with probabil-

ity 1
2 rec

.

In summary, with regard to each query i in L1, we 

have a collision probability of at most 1
2 1

 + 

(no. of Classes)
2 1+  rec

 ≤ 1
2 1

 + q2

2 1+  rec
. Summing up the 

probabilities for all i in L1, we get the upper bound of 
the probability for Case 2 as

Pr[Case 2] ≤ q1

2 1
 ≤ q1q2

2 1+  rec
.					�      (12)

Case 3. We consider the probability that, for an 
irregular semi-consistent query (i, j) in a class, there 
exists another irregular semi-consistent query (u, ) 
in the same class that causes a collision.

First of all, (i, j) itself must be fully consistent. This 

is satisfied with probability at most 1
2 1

. In addition, 

(u, ) must be fully consistent and this happens with 

probability at most 1
2 1

.

Next, we consider the number of (u, ) in the class, 
say Classk, that collide with (i, j) with nonzero prob-
ability. We first claim that if j = , then (i, j) and (u, ) 
cannot collide. Suppose that j = . Since both (i, j) and 
(u, ) are semi-consistent, Ri = Dj = D  = Ru holds.

Since (i, j) and (u, ) are distinct, (Ri, Mi) ≠ (Ru, Mu), 
so Mi ≠ Mu. If a collision happens, cj ⊕ Mi = c  ⊕ Mu 
must hold. But this is not possible because cj = c  and 
Mi ≠ Mu. We next claim that if (i, j) and (u, ) satisfy 
cj ⊕ Mi = c  ⊕ Mu, then no other (u′, ) in the same 
class can cause cj ⊕ Mi = c  ⊕ Mu′. The reason is 

essentially the same as for the above claim. Since 
both (u, ) and (u′, ) are semi-consistent and in the 
same class, Mu ≠ Mu′ must be the case (otherwise, u 
and u′ are the same query in L1). Hence, cj ⊕ Mi = c  
⊕ Mu = c  ⊕ Mu′ cannot happen. From the above two 
claims, we can see that, for (i, j), and for every  in 
Classk, there could exist at most one u that makes (i, 
j, u, ) have a collision. Namely, there are at most 
|Classk| − 1 candidates of (u, ) that have nonzero 
probability of collision with (i, j).

In summary, for every irregular semi-consistent (i, 
j), the probability that there exists an irregular semi-

consistent (u, ) that causes a collision is at most 1
2 1

 . 

|Classk| − 1
2 1

. From Fact 3, we have at most q1 candi-

dates of such (i, j) in a class. Thus, the probability of 

collision in each class is at most q1

2 1
 . |Classk| − 1

2 1
. 

Summing up the probabilities for all classes and 

applying k |Classk| ≤ q2, we get

Pr[Case 3] ≤ 
k  

 q1

2 1
 . |Classk| − 1

2 1
 ≤ q1q2

22 1
.					�      (13)

Summary. From the bounds shown as in the Eqs. 
(10), (12), and (13), we get

∆
coll(q1, q2) = Pr[Case 1] + Pr[Case 2] + 

Pr[Case 3] ≤ q1
2

2 1+  rec
 + q1

2 1
 + q1q2

2 1+ rec
. + q1q2

22 1

					�    
(14)

as stated.

4.2   In the ideal cipher model
Let ( , , ) be a symmetric encryption such 

that:  is a probabilistic algorithm that takes secu-
rity parameter λ and outputs a secret key sk,  is a 
(probabilistic) algorithm that encrypts input message 
ms  and outputs a ciphertext ξ by using secret key sk, 
and  is a decryption algorithm that takes cipher-
text ξ and recovers plaintext ms  by using secret key 
sk.

We model a symmetric encryption scheme as an 
ideal cipher in the following

–  and  are oracles.
– �Given a query (sk, ms ), oracle  does the fol-

lowing. If (sk, |ms |) is not recorded in Π, an ini-
tially empty list, select a new random permutation 

: {0, 1}|ms | → {0, 1}|ms | and return (ms ). 
Then, record (sk, |ms |, ) to Π. If (sk, |ms |) is 
in Π, simply return (ms ) using the corre-
sponding . Oracle  does the reverse. That 
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is, given a query (sk, ξ), if (sk, |ξ|) is not in Π, 
select a new random permutation : {0, 1}|ξ| → 
{0, 1}|ξ|, record (sk, |ξ|, ) in Π, and return 

−1(ξ). If (sk, |ξ|) is in Π, simply return 
−1(ξ) using the corresponding .

We now construct ∆ and ∆−1 as follows. Let  be a 
sufficiently long fixed string.

∆(a, m) =  (sk, ||m) where sk ← (λ; a).					�      (15)

∆−1(a, ξ) = m where ar||m ← (sk, ξ) and sk 
← (λ; a).

					�      (16)

Without loss of generality, we assume that  takes 
randomness from the domain of a in the above con-
struction. (Otherwise, a is preprocessed with an 
entropy smoothing method and then given to .) 
The output of  is separated into two parts so that 
the length of the first part equals the length of the 
prefixed string  and the remaining part is taken as 
a recovered message.

In ∆−1, the recovered  is not used at all. It can be 
used to make the verification procedure slightly more 
efficient as follows.

– �(Signature verification: ) Given  and (r, z, n), 
compute c ← H(r, n), a ← V( , c, z), and m ← 
∆−1(a, r). Then, let ar be the string obtained 
while computing ∆−1. If ar = , output ( , 
m||n). Otherwise, output .

Namely, it verifies whether or not the predeter-
mined string  is recovered correctly.

We claim that the above construction conforms to 
our requirements. Again, the first three requirements 
are obviously satisfied. Collision resistance is stated 
with a proof below. Let  be BitLen( ).

Lemma 3. (Invertibility, compactness, and ran-
domness) The above ∆ is invertible. In particular, the 
above ∆−1 is the inverse function. It is compact when 

 is set to  ≤ BitLen(Dom(A)). The output distri-
bution of ∆ is uniform over {0, 1}  + rec.

Lemma 4. (Collision resistance) If  and rec are 
polynomial in λ, the above ∆ is collision resistant 
against polynomial-time adversaries that make a 
polynomial number of queries to  and . In par-
ticular, for any adversary asking qd and qe queries to 

 and , respectively, ∆
coll ≤ qd

2
 + qe

2

2 +  rec
 

holds.
Proof. Observe that a collision happens only if
– �there exists at least one pair of the same value 

among the returned values from  or
– �there exists a message returned from  whose 

leading part is .

The probability of the former case is upper bounded 

by qe
2

2 +  rec
 as a result of the birthday paradox among 

at most qe randomly selected return values from . 
Since every value returned from  is random, the 
probability that the second case occurs when at most 

qd queries are asked is at most qd

2
. Summing up these 

bounds gives the upper bound as stated.
From these lemmas, recommendable settings 

would be  = rec = BitLen(Dom(A))/2 to balance the 
efficiency of the message recovery property and 
unforgeability.

With this instantiation of the ∆ function and the 
Schnorr identification scheme defined over a group 
over an elliptic-curve as the underlying sigma-proto-
col, the resulting message recovery signature scheme 
turns out to be the ECPV scheme presented in [12].

5.   Conclusion and open problems

We presented a generic method that transforms a 
sigma-protocol into a message recovery signature 
scheme in the random oracle model with specific 
properties of the redundancy function. The frame-
work allows one to build a new message recovery 
signature scheme in a modular fashion such that the 
sigma-protocol and the redundancy function are 
designed and analyzed in completely separate ways. 
Thus, one can now focus on designing the redundan-
cy function with the shown properties and then auto-
matically obtain a secure digital signature scheme 
with message recovery.

Two specific redundancy functions were shown and 
it was proved that one meets all the sufficient proper-
ties in the random oracle model while the other meets 
those in the ideal cipher model. Combined with a 
sigma-protocol in our framework, the first redun-
dancy function yields a refined version of the ECAO 
message recovery signature scheme with a more 
understandable and convincing modular security 
proof. This can be regarded as an example that shows 
that our new framework can improve existing 
schemes by increasing their security. The second 
redundancy function yields an already known 
scheme, ECPV with another security proof. Thus, our 
framework gives another insightful explanation into 
an existing scheme and validates its design. These 
examples show the usefulness of our framework.

One of the remaining challenges is to construct the 
redundancy function without using idealized assump-
tions. Another challenge is to find another framework 
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that yields shorter signed messages. One essential 
question is whether the redundancy is unavoidable or 
not for any message recovery signature schemes. 
Another direction of research includes relaxing the 
requirements for the redundancy function or even 
finding necessary and sufficient conditions.
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