
� NTT Technical Review

1. Introduction

Digital signatures have been a central research sub-
ject in cryptography and are widely used these days.
Among the many theoretical issues to pursue, effi-
ciency is of great concern in practice. It is typically
measured by the size of the public key and the signa-
tures and by the computational cost for signature
generation and verification. This paper focuses on
efficient digital signature schemes that yield short
signatures.

A digital signature scheme yields either a digital
signature with an appendix or with messa e recovery.
In the former case, a signed message looks like (σ,
ms), where σ is the signature and ms is the mes-
sage. Given (σ, ms), the verifier can determine
whether σ is a correct signature that guarantees the
authenticity and integrity of message ms . Naturally,
the length of a signed message is the sum of the
length of the message and the signature. In the latter
case, a signed message is like (σ, n), where n is part
of the message. The remaining part of the message is
contained in signature σ, and anyone can recover the
entire message. Because of this structure, one can
expect a signed message to be shorter than a message
in the case of a signature with appendix.

Typically, a message recovery signature proceeds
as follows. The signer adds some redundancy to the
message to sign it. This produces a signed message
(σ, n). To verify the signed message, the verifier first
recovers the entire message ms and then checks
whether the recovered message has the correct redun-
dancy. All that is required to recover the message is
the public key, so anyone can do it. Furthermore,
every random string (σ, n) will yield a string that
looks like a redundant message (but is actually a ran-
dom meaningless one). Accordingly, it is essential to
choose redundancy that cannot be easily satisfied by
the message recovered from forged (σ, n).

However, there are many message recovery signa-
ture schemes in the literature that do not specify or
even characterize the necessary properties of the
redundancy that makes the signature scheme proven
secure. For RSA (Rivest, Shamir, and Adleman) sig-
natures, there are some redundancy functions (also
known as the padding method) such as PSS-R [1] that
eventually achieves security against adaptive chosen
message attacks [2] in the random oracle model [3].
In [4]–[6], Nyberg and Rouppel presented message
recovery signature schemes whose security is based
on the discrete-log problem, but no specific redun-
dancy function was given, so its security is unclear. It
was followed by some similar schemes, e.g., [7], also
without specific redundancy functions. In [8], Abe
and Okamoto presented a message recovery version
of the Schnorr signature scheme [9] with a specific

Selected Papers: Research Activities in Laboratories	 of New Fellows Part II

Message Recovery Signature Schemes from
Sigma-protocols
Masayuki Abe†, Tatsuaki Okamoto, and Koutarou Suzuki
Abstract

This paper presents a framework for constructing message recovery signature schemes from sigma-
protocols. The heart of our construction is a redundancy function that adds some redundancy to a
message that only a legitimately signed and recovered message can have. We characterize redundancy
functions that make the resulting message recovery signature scheme proven secure. Our framework
includes known schemes when the building blocks are given concrete implementations, so it presents
insightful explanation into their structure.

†	 NTT Information Sharing Platform Laboratories
	 Musashino-shi, 180-8585 Japan
	 Email: abe.masayuki@lab.ntt.co.jp

Vol. 6 No. 1 Jan. 2008 ��

redundancy using random oracles but with a very
complicated security analysis that results in a high
cost for reduction to the discrete logarithm problem.
In [10], Naccache and Stern constructed a message
recovery signature scheme from DSA [11] with char-
acterization of sufficient redundancy. Pintsov and
Vanstone presented a message recovery version of the
Schnorr signature scheme whose security is proven in
the ideal cipher model, which is known as the ECPV
scheme [12], [13]. Many of these schemes are includ-
ed in international standards such as [14].

The Fiat-Shamir transform [15] is a well-known
methodology for obtaining a secure digital signature
scheme. It converts a sigma-protocol [16], [17] into a
secure signature scheme in the random oracle model.
A sigma-protocol is a two-party protocol where a
prover interacts with a verifier to convince him that
the prover knows a secret, which is often understood
as a secret key corresponding to a public key, without
leaking anything about the secret. More precisely, it
is a public-coin three-round honest verifier zero-
knowledge proof system that has special soundness
and special honest verifier zero-knowledge. Such
protocols are often used for interactive authentica-
tion. The Fiat-Shamir transform can be used to elimi-
nate the interaction and enable the prover alone to
create a transcript of the execution of the sigma-pro-
tocol so that it can act as evidence of his knowledge
about the secret, like the interactive version. When an
arbitrary message is bound to the transcript, one can
see that only the person who knows the secret can
create the transcript with the message. Thus, it works
as a digital signature with appendix. However, it is
not known whether such a technique is also useful for
designing digital signature schemes with message
recovery.

In this paper, we present a framework for construct-
ing message recovery signature schemes from sigma-
protocols. Our results show how to securely convo-
lute part of a document into a message used in the
sigma-protocol by using a redundancy function and
eventually turn the sigma-protocol into a message
recovery signature scheme that is adaptively chosen
message secure in the random oracle model.

Importantly, we characterize the redundancy func-
tion that is sufficient to make the resulting message
recovery signature scheme proven secure in the ran-
dom oracle model. We then show two instantiations
of the redundancy function that conforms to our
requirements based on the random oracle model and
the ideal cipher model. At 80-bit security with typical
parameter settings, both instantiations shorten the

signed message by 80 bits. Our framework yields
known schemes, ECPV in particular, when the build-
ing blocks are given concrete implementations;
hence, it presents insightful explanation into their
structure.

2. Preliminaries

2.1 Notation
We consider uniform probabilistic algorithms (i.e.,

Turing machines) that take as input (the unary encod-
ing of) a security parameter λ ∈ and possibly other
inputs and run in deterministic polynomial time in λ.
We thus always implicitly require the size of the input
to be bounded by some polynomial in λ. Adversarial
behavior is modeled by non-uniform polynomial-
time probabilistic algorithms, i.e., by algorithms that
together with the security parameter λ also get a poly-
nomial-sized auxiliary input au λ. To simplify the
notation, we usually let the dependency on λ (and on
au λ) remain implicit. By (), we denote the output
distribution of a probabilistic algorithm with input
 and uniformly chosen randomness. By ← (),

we mean that algorithm is executed on input and
the output is assigned to . We may also denote it as
 ← (; r) when the randomness r is to be explicitly

noted. For any algorithm , the output domain of
is denoted by Dom(). Similarly, for any finite set S,
we use the notation ← S to denote that is sampled
uniformly from S, and ← means that the value
is assigned to . By BitLen(S), we denote the number
of bits used to present the largest element in S.

|X| is used in different ways. If X is a set, |X| denotes
the cardinality of X. If X is a distribution or an algo-
rithm, |X| denotes the number of elements in X with
nonzero probability. If X is a variable whose actual
value is taken from some range, |X| denotes the num-
ber of bits needed to present the maximum value in
the range. (Hence, |X| does not necessarily equal
[log2 X] for the actual value assigned to X.) Finally, if
X is a string, |X| is the number of bits needed to pres-
ent the string.

We use X := Y to define a new variable X with Y. For
any two strings a and b, a||b denotes a string that
concatenates a and b in order. By a||b ← c, we denote
that string c is separated into two parts and assigned
to a and b. The manner of separation depends on the
context but may not be explicitly given when it is
clear from the context.

P[= ()] denotes the probability (taken over a
uniformly distributed random tape) that outputs
on input , and we write P[← : () =] for the

Selected Papers: Research Activities in Laboratories	 of New Fellows Part II

Selected Papers

� NTT Technical Review

(average) probability that outputs on input
when is output by : P[← : () =] = P[
= ()]P[=]. We also use natural self-explanatory
extensions of this notation.

An oracle algorithm is an algorithm in the above
sense connected to an oracle in that it can write on its
own tape an input for the oracle and tell the oracle to
execute it. Then, in a single step, the oracle processes
this input in the prescribed way and writes its output
on the tape. We write when we consider to be
connected to the particular oracle .

As is common practice, a value v(λ)∈R, which
depends on the security parameter λ, is treated as
negli ible, denoted by v(λ) ≤ ne l(λ) or v ≤ ne l, if
c > 0 λ′∈ λ ≥ λ′: v(λ) < 1/ λc.

2.2 Sigma-protocol
Let L⊂{0, 1}* be a language and RL be a binary

relation associated with L. Let WL() for ∈L denote
a set of witnesses for , i.e., WL() = { |RL (,) =
1}. Let be an instance generator for L that takes
security parameter λ and chooses an instance ∈L
and a witness ∈WL() with restriction | | = λ. A
sigma-protocol for language L is an honest verifier
zero-knowledge proof system that consists of (proba-
bilistic) polynomial-time algorithms (A, C, Z, V, E,
M). These algorithms work as follows.

For (,) ← (λ), the verifier is given and the
prover is given (,). The prover first sends the first
message a ← A(; t) to the verifier and the verifier
challenges the prover by returning c ← C(). The
prover answers the challenge by sending z ← Z(, t,
c) to the verifier. The verifier accepts if a = V(, c, z).
(More generally, V can be an algorithm that takes (a,
, c, z) as input and returns 1 or 0 to report acceptance

and rejection. Note, however, that it is essential for
our purpose that a can be computed from (, c, z) in
polynomial time.) We assume perfect correctness,
where the verifier accepts with probability 1 when
both the prover and verifier are honest.

A sigma-protocol features special soundness. That
is, there exists a deterministic polynomial-time algo-
rithm E, called an extractor, that takes two acceptable
transcripts with the same first message and different
challenges, say (, a, c, z) and (, a, c′, z′) such that
∈L, c ≠ c′, V(, c, z) = V(, c′, z′) = a as input and
outputs a witness for with probability 1 in poly-
nomial time.

A sigma-protocol is honest verifier zero-knowled e.
Namely, we assume that there exists a polynomial-
time algorithm called a simulator, denoted by M, that
takes ∈L and c ← C() as input and outputs (a, z)

such that the distribution of simulated (a, c, z) is iden-
tical to the distribution of the real transcript generated
by the honest prover and verifier.

A note on relaxation. We can allow a small error
probability in the correctness but the resulting signa-
ture scheme inherits the error probability in its cor-
rectness. Similarly, E can be a probabilistic algorithm
with negligible error probability. Also, the quality of
zero-knowledge simulator M can be relaxed to statis-
tical or computational rather than perfect. These
relaxations affect the unforgeability of the resulting
signature scheme.

2.3 �Security model of message recovery signature
scheme

To define the security precisely, we first must pres-
ent a syntactical definition of message recovery sig-
nature schemes. The one shown below is a very
standard definition, which can be seamlessly turned
into the definition of ordinary signature schemes with
appendix by letting the non-recoverable message n be
the same as the entire message ms .

Definition 1. (Message recovery signature scheme)
A message recovery signature scheme consists of
three probabilistic polynomial-time algorithms (,

,).
– � is a key generation algorithm that takes security

parameter λ and outputs a public-key pk and a
private-key sk. Associated with pk is a recover-
able message space {0, 1} rec.

– � is a signature-issuing algorithm that takes a
private-key sk and a message ms and outputs a
signature σ and the non-recoverable part of the
message n.

– � is a verification protocol that takes a public key
pk and a signed message (σ, n) and outputs
(, ms) or . It is required that (,
ms) = (pk, (sk, ms)) for any pk and sk gener-
ated by and for any ms .

A message recovery signature scheme is secure if it
withstands an adversary that asks a legitimate signer
to sign arbitrary messages and then attempts to forge
a valid signed message never signed by the signer.
Formal definition of such a chosen message adver-
sary follows.

Definition 2. (Chosen message adversary) A (sig,
sig, qs, qh) chosen message adversary Asig against the

above message recovery signature scheme is an ora-
cle Turing machine that launches a chosen message
attack that consists of the following steps.

1.	(pk, sk) ← (λ)
2.	(σ̃, ñ) ← A ,

sig (pk)

Selected Papers

Vol. 6 No. 1 Jan. 2008 ��

 is the signing oracle such that, for every signing
query for a message, say ms i, it returns a legitimate-
ly generated signed message (σ i, ni) by using private
key sk. is the random oracle that corresponds to
hash function H in the signature scheme. Let T denote
the signed messages (σ i, ni) observed by . The final
output of Asig must satisfy (σ̃, ñ) ∉ T. Asig makes at
most qs queries to and at most qh queries to and
then stops within running time sig. Then, (pk, σ̃, ñ)
outputs (, ms) for some ms with probability
at least sig. The probability is taken over all the ran-
dom coins used in the chosen message attack.

3. Our construction

3.1 Redundancy function
The heart of our construction is the redundancy

function, say ∆: Dom(A) × {0, 1} rec → D, that takes
the first message a of the underlying sigma-protocol
and a recoverable part of the message m and outputs
a redundant message r in some specific domain D.
More precisely, we assume a family of functions ∆λ =
{∆} and its ensemble {∆λ}λ∈ that satisfy the follow-
ing properties.

1.	�(Invertibility) For every ∆, there exists an inverse
function ∆−1 that, given (a, r), outputs m. It is
required that m = ∆−1(a, ∆(a, m)).

2.	�(Compactness) BitLen(Dom(A)) + rec ≥
BitLen(D).

3.	�(Randomness) For every ∆ and every m, the dis-
tribution of ∆(a, m) for uniformly chosen a is
uniform.

4.	�(Collision resistance) Given ∆ ← ∆λ, any proba-
bilistic algorithm running within time finds (a,
m) and (a′, m′) such that ∆(a, m) = ∆(a′, m′) and
(a, m) ≠ (a′, m′) only with probability, say ∆

coll(),
which is negligible in λ if is polynomial in λ.

Invertibility is needed for our construction to work.
Compactness is needed for the message recovery
property to be meaningful. Without this property, the
signed message of the resulting message recovery
signature scheme would be longer than the one from
the signature scheme with appendix. Randomness
and collision resistance are needed for unforgeability
of the resulting signature scheme.

One can relax the randomness property to be com-
putationally indistinguishable from uniform. This
will affect the unforgeability of the resulting signa-
ture scheme, as we mention later.

As we shall see in Section 4. ∆
coll() may take some

other parameters such as the maximum number of
oracle queries, depending on its construction.

3.2 Our scheme
Given a sigma-protocol (A, C, Z, V, E, M) for and

a hash function H, we construct a message recovery
signature scheme (, ,) as follows.

– �(Key generation:) Given λ, run (,) ← (λ)
and output as a public key and as a private
key. Security parameter λ also determines the
length of the recoverable part rec and the redun-
dancy function ∆.

– �(Signature generation:) Given private key and
message ms , first chop ms as ms = m||n so that
m∈ {0, 1} rec. Then, compute a ← A(; t), r ←
∆(a, m), c ← H(r, n), and z ← Z(, t, c). Then,
output (r, z, n) as a signed message.

– �(Signature verification:) Given and (r, z, n),
compute c ← H(r, n), a ← V(, c, z), and m ←
∆−1(a, r). If r ← ∆(a, m), output (, m||n).
Otherwise, output .

Implementation note. Depending on the specific
structure of function ∆, the signature verification can
be more efficient than recomputing ∆. See also Sub-
sections 4.1 and 4.2.

3.3 Proof of security
Theorem 1. (Security against chosen message

attacks) If there exists (sig, sig, qs, qh)-adversary Asig
for the message recovery signature scheme based on
language L and an instance generator , then there
exists a (,) witness extraction adversary A ,

where ≤ 8 sim /,(sig − 4 qsqh

|D|
)

and ≥ 9
100

. 1
qh

(1 − 1
|C|

) (1 − ∆,
coll

sim).

Here, sim is sig + qsTsig, where Tsig is the sum of the

running times of C, M, and ∆, and ∆,
coll

sim is (sig

2 −

qsqh

|D|
) −1

∆
coll (2 sim).

Proof. This is proved by constructing A from Asig
using a forking lemma in a standard manner. Let ∈L
be an instance generated by (λ). Given as input,
A works as follows.

1.	�Invoke Asig with as a public key and a uni-
formly chosen random tape. If Asig terminates
with a valid signed message (r̃, z̃, ñ), proceed to
the next step. Otherwise, repeat this step with the
same and a fresh random tape up to t1 times.
Abort if never successful. Oracle queries are
handled as follows.

– �(Query ms i to .) Execute ci ← C() and (ai, zi)
← M(, ci). Then, chop ms i into mi||ni, compute
ri ← ∆(ai, mi), and define H so that ci = H(ri, ni).

If H has already been defined for such an input,
abort. Otherwise, return (ri, zi, ni) as a signed mes-
sage.

– �(Query (rj, nj) to .) If the input is fresh, select cj
uniformly, define H as cj = H(rj, nj), and return cj.
Otherwise, return the preliminarily defined
value.

2.	�Let i* denote the index that is asked (r̃, ñ). That
is, ri* = r̃, ni* = ñ, and ci* = H(r̃, ñ). Let ã denote ã
← V(, ci*, z̃). Move to the next step.

3.	�Invoke Asig with and the random tape used in
the successful run of the first step. The simula-
tion for oracle is unchanged. Oracle is simu-
lated identically up to the point that (r̃, ñ) is
asked. From that moment, is simulated with
new randomness. If Asig terminates with a valid
signed message (r̃, z̃′, ñ), then proceed to the next
step. Otherwise, repeat this step up to t2 times.
Abort if never successful.

4.	�Let ci*′ = H(r̃, ñ), which was observed in the sec-
ond step, and let ã′ be ã′ ← V(, ci*′ , zz̃′). If ci* =
ci*′ or ã ≠ ã′, abort. Otherwise, compute ←
E(, ã, ci*, zz̃, ci*′ , zz̃′) and output .

Now we estimate the running time and the proba-
bility of success of A . First, the success probability
is estimated as follows.

– �First, we estimate the error probability of the
oracle simulation. Observe that the simulation of

 fails only if (ri, ni) has already been defined for
H. Since the distribution of ni is arbitrarily deter-
mined by the adversary, we consider only the
sufficient condition that ri has appeared so far.

Suppose that ri is uniformly chosen from D. Then,
the probability that ri has appeared among the inputs
to H is at most qh/|D|.

Next consider ri generated through ∆ from uni-
formly chosen ai. Since we assume that the distribu-
tion of the output of ∆ is uniform, the above probabil-
ity does not change at all. (This is where the relax-
ation of randomness on ∆ would have an effect. If the
randomness is not perfect but just indistinguishable
with some advantage, say ∆

dist() for a polynomial-
time distinguisher whose running time is , then the
error probability of the simulation increases by
∆
dist(sim).)
Then, consider ai generated by M. As in the previ-

ous step, since the distribution of such ai is perfectly
the same as uniform, the error probability does not
change at all, either. (Again, this is where the relax-
ation on the zero-knowledge property of the underly-
ing sigma-protocol matters. If the zero-knowledge
simulation is only computational with some advan-

tage, say at most zk() for a distinguisher whose run-
ning time is , then the error probability increases by
zk(sim) .)
Therefore, the probability serr that the simulation

fails while handling qs queries is bound as

serr ≤ 1 − (1 − qh

|D|
)qs ≤ qsqh

|D|
. � (1)

The simulation of random oracle is obviously
perfect unless the simulation of fails.

– �The success probability of Asig for fixed is at
least sig/2 with probability 1/2 (over the choice of
) due to the heavy-row lemma of [15], [18]. With

the simulated signing oracle, the success proba-
bility reduces to sig/2 − serr. Accordingly, every
run of Asig in the first step is successful with prob-
ability at least m1: = (sig/2 − serr). By repeating
the attempt up to t1: = 1/m1 times, we get at least
one valid (r̃, z̃, ñ) at the end of the first step with
probability greater than 1 ≥ 1 − (1 − m1)1/m1 ≥ 1 −
e−1 ≥ 3/5. Let * denote the randomness used for
simulating the random oracle for the i*-th and all
subsequent queries in the successful run. Let
denote all other randomness also used in the suc-
cessful run.

– �Over the choice of *, the success probability of
Asig for fixed and is at least sig/4 with proba-
bility 1/2 (over the choice of) due to the heavy-
row lemma again. If we apply the same argument
as in the first step, each attempt in the third step is
successful with probability at least m2: = sig/4 −
serr. If we repeat this attempt up to t2: = 1/m 2

times, another valid signed message (r̃ ′, z̃′, ñ′) is
obtained with probability greater than 2 ≥ 1 − (1
− m2)1/m2 ≥ 1 − e−1 ≥ 3/5. Furthermore, the out-
come corresponds to the i*-th query to H, i.e., r̃ ′
= r̃ and ñ′ = ñ, with probability at least 1/qh.

– �In the fourth step, ci* = ci*′ happens only with prob-
ability 1/|C|. Observe that, if ã ≠ ã′, then we have
r̃ = ∆(ã, ∆−1(ã, r̃)) = ∆(ã′, ∆−1(ã′, r̃)) which is a
collision. Let ∆,

coll
sim denote the probability of such

an event occurring. Since the running time of A
is less than = (t1 + t2) sim, ∆,

coll
sim can be upper

bounded by ∆
coll(). It is, however, an overesti-

mation. More precise estimation of the probabil-
ity is at most

∆,
coll

sim = t1 . ∆
coll(2 sim) � (2)

because we have at most t1 trials for an independent
choice of ∆, and the particular ∆ chosen in the suc-
cessful run in the first step is executed again in the
third step of the simulation and the total running time
with this particular ∆ is 2 sim.

Selected Papers

� NTT Technical Review

Selected Papers

Vol. 6 No. 1 Jan. 2008 �

By summing up the above assessment, we get the
total success probability of A as

 ≥ 1
2

 . 3
5

 . 1
2

 . 3
5

 . 1
qh

 (1 − 1
|C|

) (1 − ∆,
coll

sim)						� (3)

≥ 9
100

 . 1
qh

 (1 − 1
|C|

) (1 − ∆,
coll

sim).						� (4)

Assuming that the time for generating randomness
and table searching used for simulating H is free, the
running time is

 ≤ (t1 + t2) . sim � (5)

≤ (1/(sig/2 − serr) + 1/(sig/4 − serr)) . sim � (6)

≤ 8 sim /(sig − 4 qsqh

|D|
) � (7)

4. Construction of ∆

4.1 In the random oracle model
We construct ∆ and ∆−1 as follows.

∆(a, m) = h1||h2, where h1 = H1(a, m) and h2
= m ⊕ H2(a, h1)

						� (8)

∆−1(a, h1||h2) = h2 ⊕ H2(a, h1) � (9)

H1: {0, 1}* → {0, 1} 1 and H2: {0, 1}* → {0, 1} rec
are hash functions modeled as independent random
oracles.

To make the message recovery property meaning-
ful, 1 < |a| should hold. Note that, as we shall show
in Lemma 2, setting rec too short would cause a secu-
rity problem, i.e., it would result in a high probability
of collision. Recommendable settings of 1 and rec
are 1 = rec = |a|/2 to balance security and the benefit
of message recovery. If one would like the length of
the recoverable part to vary depending on the given
message, the message must be polynomially long or
some kind of padding must be applied so that the total
length becomes polynomial in λ.

With the above instantiation, the verification proce-
dure specified in Subsection 3.2 can be slightly more
efficient. The modified signature verification proce-
dure is as follows.

– �(Signature verification:) Given and (r, z, n),
compute c ← H(r, n), a ← V(, c, z), and m ←
∆−1(a, r). Then, let h1||h2 ← r. If h1 = H1(a, m),
output (, m||n). Otherwise, output .

Namely, it replaces the testing r = ∆(a, m) with h1 =
H1(a, m) and saves one computation of H2.

The above ∆ satisfies the required properties listed
in Subsection 3.1. Specifically, the following lemmas
hold. The first three (invertibility, compactness, and
randomness) are trivial and the last one (collision
resistance) is followed by a detailed proof.

Lemma 1. (Invertibility, compactness, and ran-
domness) The above ∆ is invertible. In particular, the
above ∆−1 is the inverse function. It is compact when

1 is set so that BitLen(Dom(A)) ≥ 1. The output dis-
tribution of ∆ is uniform over {0, 1} 1+ rec if H1 and
H2 are independent random oracles.

Lemma 2. (Collision resistance) If 1 and rec are
polynomial in λ, the above ∆ is collision resistant
against polynomial-time adversaries that make a
polynomial number of queries to H1 and H2. In par-
ticular, for any adversary asking q1 and q2 queries to
H1 and H2, respectively, the probability of collision is

upper bounded by ∆
coll(q1, q2) ≤ q1

2 1+ rec
 + q1

2 1
 +

q1q2

2 1+ rec
 + q1

2 1+ rec
. + q1q2

22 1
.

Proof. (of Lemma 2) We refine the notation for the
input and output of H1 and H2 as follows. Let hi =
H1(Ri, Mi) and cj = H2(Dj, ej) denote the i-th and j-th
input/output of H1 and H2, respectively. We first
define the notation and some terminology. Let L1

denote the set of queries and answers for H1, i.e., L1
= {(Ri, Mi, hi)|i = 1, ..., q1}. Define L2 = {(Dj, ej, cj)| j
= 1, ..., q2} as well. Without loss of generality, we
assume that every query is fresh, so every entry in L1
and L2 is unique. By (i, j), we denote a set that con-
sists of the i-th entry of L1 and the j-th one of L2, i.e.,
(i, j) = (Ri, Mi, hi, Dj, ej, cj). We say that (i, j) is fully
consistent if (Ri, hi) = (Dj, ej). Note that if (i, j) is fully
consistent, it forms a correct computation of ∆. By
FullCon (i, j) = or , we mean that (i, j) is or
is not fully consistent, respectively. We also say that
(i, j) is semi-consistent if Ri = Dj. A semi-consistent
(i, j) may also be fully consistent but this is not neces-
sary. By SemiCon(i, j) = or , we mean that
(i, j) is or is not semi-consistent, respectively. Let
(Hb, i) for b ∈1, 2 denote the time at which the i-th

query is made to Hb. (It can be understood as the
number of steps before the i-th query is made to ora-
cle H1). Since no more than one query can be made at
one step, (Hb, i) is strictly larger or smaller than
(Hb′, i′) if i ≠ i′. We say that (i, j) is regular if (H1, i)

< (H2, j); otherwise, it is irregular. The intuition
behind this terminology is that anyone who computes
∆ correctly should ask H1 first and then H2 in that
order. Therefore, a normal computation of ∆ yields
regular and fully consistent (i, j). By Regular(i, j) =

Selected Papers

� NTT Technical Review

 or , we mean that (i, j) is regular or irregular,
respectively. We define function X(i, j) as X(i, j) = cj
⊕ Mi.

With this terminology, we can say that a collision
∆(Ri, Mi) = ∆(Ru, Mu) happens if and only if there
exist j and such that

– (i, j) ≠ (u,),
– FullCon(i, j) = FullCon(u,) = , and
– hi||X(i, j) = hu||X(u,).
Accordingly, we say that (i, j) and (u,) collide if

and only if the above conditions are satisfied. By
Collision(i, j, u,) = or , we mean (i, j) and
(u,) do or do not collide, respectively.

We classify entries in L2 by the value of ej. Namely,
for every different value of ej in L2, we consider a set
of indexes { |e = ej} and label such sets as Class1,
Class2, In this way, every entry in L2 is associated
with one class. Obviously, there are at most q2 class-
es. Let SameClass(j,) be if and only if j and
are in the same class, i.e., ej = e .

The above definitions lead simply to some facts.
Fact 1. If SameClass(j,) = , then Collision(i,

j, u,) = .
If two consistent (i, j) and (u,) are in different

classes, then hi = ej ≠ e = hu holds and they cannot
collide. Moreover, if either of them is inconsistent, it
cannot have a collision, either. Therefore, we con-
sider the possibility of collision only within a class.

Fact 2. |{(i, j)|FullCon(i, j) = }| ≤ q1.
Namely, there are at most q1 pairs of fully consis-

tent queries. Suppose that (i, j) is fully consistent and
(i, j′) is also fully consistent for some j′. Then, ej = hi
= ej′ and Dj = Ri = Dj′ holds, and it means that the j-th
and j′-th queries to H2 are identical, whereas we
assumed that L2 contains no duplicate entries.

Fact 3. |{(i, j)|SemiCon(i, j) = , j ∈Classk}| ≤
q1 for every Classk.

Namely, there are at most q1 semi-consistent pairs
of queries with regard to each class of L2. Suppose
that (i, j) and (i, j′) are both semi-consistent and j and
j′ are in the same class. We then have Dj = Ri = Dj′ and
ej = ej′. Hence, the j-th and j′-th entries in L2 are iden-
tical.

Suppose that (i, j) and (u,) are both semi-consis-
tent and they are in the same class. These queries can
collide. (On the other hand, if either of them is not
semi-consistent or if they are in different classes, they
cannot collide.) Regarding the regularity of (i, j) and
(u,), one of the following cases must be true.

Case 1.	Both are regular.
Case 2.	 One is regular and the other is irregular.
Case 3.	 Both are irregular.

A pair of regular queries, say (i, j), is either fully
consistent (the case where (Ri, hi) is the input (Di, ei)
to H2) or inconsistent (something else is given as
input to H2). These cases are independent of the
choice of the randomness of H1 and H2. If (i, j) is
regular but inconsistent, there is no chance of it caus-
ing a collision with another pair of queries. Hence, we
only need to consider fully consistent queries in the
regular case. Below, we consider the probability of
collision in each of the above cases.

Case 1.	Consider regular and fully consistent que-
ries (i, j) and (u,) in the same class. For a collision
to occur, hi = hu and cj ⊕ Mi = c ⊕ Mu are necessary.
First of all, hi = hu happens with probability at most
1

2 1
 because both hi and hu are uniformly chosen as a

result of the true randomness of H1 and H2. Next,
consider cj ⊕ Mi = c ⊕ Mu. Since (i, j) and (u,) are
regular, (Mi) < (cj) and (Mu) < (c) hold. There-
fore, at least one of cj and c is independent of Mi and
Mu. Since both cj and c are chosen uniformly, cj ⊕ Mi

= c ⊕ Mu holds with probability at most 1
2 rec

. Thus,

(i, j) and (u,) collide with probability at most 1
2 1+ rec

.

Let FullCon(Classk) denote the number of fully con-
sistent queries in Classk. By summing up the proba-
bility for all the classes and applying Fact 2, we get

Pr[Case 1] ≤
k

 FullCon(Classk)2

2 1+ rec
 ≤ q1

2

2 1+ rec
.

					� (10)

Case 2.	For every entry i in L1, there exists at most
one entry, say j, in each class of L2 such that (i, j) is
semi-consistent. (If there exists j′ in the same class
such that (i, j′) is semi-consistent, then j = j′ because
Ri = Dj = Dj′ and ej = ej′.) We consider the probability
that the semi-consistent (i, j) in the class is irregular
and collides with a regular and fully consistent (u,)
in the same class. First of all, (i, j) must be fully con-
sistent to have a collision. Therefore, it must satisfy hi
= ej when hi is randomly and independently chosen,

which in turn happens with probability at most 1
2 1

.

Second, cj ⊕ Mi = c ⊕ Mu must hold. Since (i, j) is
irregular, however, Mi can be set after the values of cj,
c , and Mu have been seen, and this condition can be
satisfied with probability 1 by setting Mi as Mi = cj ⊕
c ⊕ Mu. Note that there is only one regular and fully
consistent (u,) in the class that causes cj ⊕ Mi = c
⊕ Mu with (i, j). Otherwise, there would exist another
regular and fully consistent (u′, ′) in the same class

Selected Papers

Vol. 6 No. 1 Jan. 2008 �

and it would cause cj ⊕ Mi = c ′ ⊕ Mu′. Then, (u, , u′,
′) would have a collision. This has already been

treated in Case 1.
One question is whether or not such a manipulated

Mi can also be a candidate for a collision in other
classes. We claim that if (i, j) in Classk has (u,) in
Classk that satisfies cj ⊕ Mi = c ⊕ Mu, then (i, j′) in
Classk′ has (u′, ′) in Classk′ that also causes cj′ ⊕ Mi

= c ′ ⊕ Mu′ only with probability 1
2 rec

. (Naturally, we

suppose (i, j′) is irregular and semi-consistent and (u′,
′) is regular and fully consistent so they fall into Case

2.) This happens only if

cj ⊕ c ⊕ Mu = cj′ ⊕ c ′ ⊕ Mu′. �(11)

Since (u,) and (u′, ′) are regular, all cj c ⊕ Mu cj′,
and c ′ ⊕ Mu′ are random and independent of each
other. Hence, Eq.(11) is satisfied only with probabil-

ity 1
2 rec

.

In summary, with regard to each query i in L1, we

have a collision probability of at most 1
2 1

 +

(no. of Classes)
2 1+ rec

 ≤ 1
2 1

 + q2

2 1+ rec
. Summing up the

probabilities for all i in L1, we get the upper bound of
the probability for Case 2 as

Pr[Case 2] ≤ q1

2 1
 ≤ q1q2

2 1+ rec
.					� (12)

Case 3. We consider the probability that, for an
irregular semi-consistent query (i, j) in a class, there
exists another irregular semi-consistent query (u,)
in the same class that causes a collision.

First of all, (i, j) itself must be fully consistent. This

is satisfied with probability at most 1
2 1

. In addition,

(u,) must be fully consistent and this happens with

probability at most 1
2 1

.

Next, we consider the number of (u,) in the class,
say Classk, that collide with (i, j) with nonzero prob-
ability. We first claim that if j = , then (i, j) and (u,)
cannot collide. Suppose that j = . Since both (i, j) and
(u,) are semi-consistent, Ri = Dj = D = Ru holds.

Since (i, j) and (u,) are distinct, (Ri, Mi) ≠ (Ru, Mu),
so Mi ≠ Mu. If a collision happens, cj ⊕ Mi = c ⊕ Mu
must hold. But this is not possible because cj = c and
Mi ≠ Mu. We next claim that if (i, j) and (u,) satisfy
cj ⊕ Mi = c ⊕ Mu, then no other (u′,) in the same
class can cause cj ⊕ Mi = c ⊕ Mu′. The reason is

essentially the same as for the above claim. Since
both (u,) and (u′,) are semi-consistent and in the
same class, Mu ≠ Mu′ must be the case (otherwise, u
and u′ are the same query in L1). Hence, cj ⊕ Mi = c
⊕ Mu = c ⊕ Mu′ cannot happen. From the above two
claims, we can see that, for (i, j), and for every in
Classk, there could exist at most one u that makes (i,
j, u,) have a collision. Namely, there are at most
|Classk| − 1 candidates of (u,) that have nonzero
probability of collision with (i, j).

In summary, for every irregular semi-consistent (i,
j), the probability that there exists an irregular semi-

consistent (u,) that causes a collision is at most 1
2 1

 .

|Classk| − 1
2 1

. From Fact 3, we have at most q1 candi-

dates of such (i, j) in a class. Thus, the probability of

collision in each class is at most q1

2 1
 . |Classk| − 1

2 1
.

Summing up the probabilities for all classes and

applying k |Classk| ≤ q2, we get

Pr[Case 3] ≤
k

 q1

2 1
 . |Classk| − 1

2 1
 ≤ q1q2

22 1
.					� (13)

Summary. From the bounds shown as in the Eqs.
(10), (12), and (13), we get

∆
coll(q1, q2) = Pr[Case 1] + Pr[Case 2] +

Pr[Case 3] ≤ q1
2

2 1+ rec
 + q1

2 1
 + q1q2

2 1+ rec
. + q1q2

22 1

					�
(14)

as stated.

4.2 In the ideal cipher model
Let (, ,) be a symmetric encryption such

that: is a probabilistic algorithm that takes secu-
rity parameter λ and outputs a secret key sk, is a
(probabilistic) algorithm that encrypts input message
ms and outputs a ciphertext ξ by using secret key sk,
and is a decryption algorithm that takes cipher-
text ξ and recovers plaintext ms by using secret key
sk.

We model a symmetric encryption scheme as an
ideal cipher in the following

– and are oracles.
– �Given a query (sk, ms), oracle does the fol-

lowing. If (sk, |ms |) is not recorded in Π, an ini-
tially empty list, select a new random permutation

: {0, 1}|ms | → {0, 1}|ms | and return (ms).
Then, record (sk, |ms |,) to Π. If (sk, |ms |) is
in Π, simply return (ms) using the corre-
sponding . Oracle does the reverse. That

Selected Papers

� NTT Technical Review

is, given a query (sk, ξ), if (sk, |ξ|) is not in Π,
select a new random permutation : {0, 1}|ξ| →
{0, 1}|ξ|, record (sk, |ξ|,) in Π, and return

−1(ξ). If (sk, |ξ|) is in Π, simply return
−1(ξ) using the corresponding .

We now construct ∆ and ∆−1 as follows. Let be a
sufficiently long fixed string.

∆(a, m) = (sk, ||m) where sk ← (λ; a).					� (15)

∆−1(a, ξ) = m where ar||m ← (sk, ξ) and sk
← (λ; a).

					� (16)

Without loss of generality, we assume that takes
randomness from the domain of a in the above con-
struction. (Otherwise, a is preprocessed with an
entropy smoothing method and then given to .)
The output of is separated into two parts so that
the length of the first part equals the length of the
prefixed string and the remaining part is taken as
a recovered message.

In ∆−1, the recovered is not used at all. It can be
used to make the verification procedure slightly more
efficient as follows.

– �(Signature verification:) Given and (r, z, n),
compute c ← H(r, n), a ← V(, c, z), and m ←
∆−1(a, r). Then, let ar be the string obtained
while computing ∆−1. If ar = , output (,
m||n). Otherwise, output .

Namely, it verifies whether or not the predeter-
mined string is recovered correctly.

We claim that the above construction conforms to
our requirements. Again, the first three requirements
are obviously satisfied. Collision resistance is stated
with a proof below. Let be BitLen().

Lemma 3. (Invertibility, compactness, and ran-
domness) The above ∆ is invertible. In particular, the
above ∆−1 is the inverse function. It is compact when

 is set to ≤ BitLen(Dom(A)). The output distri-
bution of ∆ is uniform over {0, 1} + rec.

Lemma 4. (Collision resistance) If and rec are
polynomial in λ, the above ∆ is collision resistant
against polynomial-time adversaries that make a
polynomial number of queries to and . In par-
ticular, for any adversary asking qd and qe queries to

 and , respectively, ∆
coll ≤ qd

2
 + qe

2

2 + rec

holds.
Proof. Observe that a collision happens only if
– �there exists at least one pair of the same value

among the returned values from or
– �there exists a message returned from whose

leading part is .

The probability of the former case is upper bounded

by qe
2

2 + rec
 as a result of the birthday paradox among

at most qe randomly selected return values from .
Since every value returned from is random, the
probability that the second case occurs when at most

qd queries are asked is at most qd

2
. Summing up these

bounds gives the upper bound as stated.
From these lemmas, recommendable settings

would be = rec = BitLen(Dom(A))/2 to balance the
efficiency of the message recovery property and
unforgeability.

With this instantiation of the ∆ function and the
Schnorr identification scheme defined over a group
over an elliptic-curve as the underlying sigma-proto-
col, the resulting message recovery signature scheme
turns out to be the ECPV scheme presented in [12].

5. Conclusion and open problems

We presented a generic method that transforms a
sigma-protocol into a message recovery signature
scheme in the random oracle model with specific
properties of the redundancy function. The frame-
work allows one to build a new message recovery
signature scheme in a modular fashion such that the
sigma-protocol and the redundancy function are
designed and analyzed in completely separate ways.
Thus, one can now focus on designing the redundan-
cy function with the shown properties and then auto-
matically obtain a secure digital signature scheme
with message recovery.

Two specific redundancy functions were shown and
it was proved that one meets all the sufficient proper-
ties in the random oracle model while the other meets
those in the ideal cipher model. Combined with a
sigma-protocol in our framework, the first redun-
dancy function yields a refined version of the ECAO
message recovery signature scheme with a more
understandable and convincing modular security
proof. This can be regarded as an example that shows
that our new framework can improve existing
schemes by increasing their security. The second
redundancy function yields an already known
scheme, ECPV with another security proof. Thus, our
framework gives another insightful explanation into
an existing scheme and validates its design. These
examples show the usefulness of our framework.

One of the remaining challenges is to construct the
redundancy function without using idealized assump-
tions. Another challenge is to find another framework

Selected Papers

Vol. 6 No. 1 Jan. 2008 10

that yields shorter signed messages. One essential
question is whether the redundancy is unavoidable or
not for any message recovery signature schemes.
Another direction of research includes relaxing the
requirements for the redundancy function or even
finding necessary and sufficient conditions.

References

[1]	 M. Bellare and P. Rogaway, “The exact security of digital signa-
tures––how to sign with RSA and Rabin,” in U. Maurer, editor,
Advances in Cryptology, EUROCRYPT ’96, Vol. 1070 of Lecture
Notes in Computer Science, pp. 399–416, Springer-Verlag, 1996.

[2]	 S. Goldwasser, S. Micali, and R. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM Journal on
Computing, Vol. 17, No. 2, pp. 281–308, Apr. 1988.

[3]	 M. Bellare and P. Rogaway, “Random oracles are practical: a para-
digm for designing efficient protocols,” First ACM Conference on
Computer and Communication Security, pp. 62–73, Association for
Computing Machinery, 1993.

[4]	 K. Nyberg and R. A. Rueppel, “A new signature scheme based on the
DSA giving message recovery,” in Proceedings of the First ACM
Conference on Computer and Communications Security, 1993.

[5]	 K. Nyberg and R. A. Rueppel, “Message recovery for signature
schemes based on the discrete logarithm problem,” in Alfredo De
Santis, editor, Advances in Cryptology, EUROCRYPT ’94, Vol. 950
of Lecture Notes in Computer Science, pp. 182–193, Springer-Verlag,
1995.

[6]	 K. Nyberg and R. A. Rueppel, “Message recovery for signature
schemes based on the discrete logarithm problem,” Designs, Codes
and Cryptography, Vol. 7, No. 1–2, pp. 61–81, 1996.

[7]	 A. Miyaji, “A message recovery signature scheme equivalent to DSA
over elliptic curves,” in Advances in Cryptology, Asiacrypt ’96, Vol.
1163 of Lecture Notes in Computer Science, pp. 1–14, Springer-

Verlag, 1996.
[8]	 M. Abe and T. Okamoto, “A signature scheme with message recovery

as secure as discrete logarithm,” IEICE Transaction of Fundamentals
of Electronic Communications and Computer Science, E84-A(1), Jan.
2001 (presented at ASIACRYPT ’99).

[9]	 C. P. Schnorr, “Efficient signature generation for smart cards,” Journal
of Cryptology, Vol. 4, No. 3, pp. 239–252, 1991.

[10]	 D. Naccache and J. Stern, “Signing on a postcard,” Financial Cryptog-
raphy 2000, Vol. 1962 of Lecture Notes in Computer Science, pp.
121–135, Springer-Verlag, 2001.

[11]	 U.S. Department of Commerce, National Institute of Standards and
Technology, “Digital signature standard,” FIPS PUB 186-2, 2000.

[12]	 L. Pintsov and S. Vanstone, “Postal revenue collection in the digital
age,” in Financial Cryptography 2000, Vol. 1962 of Lecture Notes in
Computer Science, pp. 105–120, Springer-Verlag, 2000.

[13]	 D. Brown and D. Johnson, “Formal security proofs for a signature
scheme with partial message recovery,” in CT-RSA 2001, Vol. 2020 of
Lecture Notes in Computer Science, pp. 126–142, Springer-Verlag,
2001.

[14]	 ISO/IEC 9796-3: Information technology––Security techniques––
Digital signature schemes giving message recovery––Part 3: Discrete
logarithm based mechanisms, 2nd Edition, JTC 1/SC 27, 2006.

[15]	 A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in A. M. Odlyzko, editor,
Advances in Cryptology, CRYPTO ’86, Vol. 263 of Lecture Notes in
Computer Science, pp. 186–199, Springer-Verlag, 1987.

[16]	 R. Cramer, “Modular Design of Secure yet Practical Cryptographic
Protocols,” Ph.D. thesis, Aula der Universiteit, 1996.

[17]	 J. Garay, P. MacKenzie, and K. Yang, “Strengthening zero-knowledge
protocols using signatures,” in E. Biham, editor, Advances in Cryptol-
ogy, Eurocrypt ’03, Vol. 2656 of Lecture Notes in Computer Science,
pp. 177–194, Springer-Verlag, 2003.
Full version available from IACR e-print archive 2003/037.

[18]	 D. Pointcheval and J. Stern, “Security arguments for digital signatures
and blind signatures,” Journal of Cryptology, Vol. 13, No. 3, pp.
339–360, 2000.

Selected Papers

11 NTT Technical Review

Tatsuaki Okamoto
Research Fellow, Okamoto Research Labora-

tory, NTT Information Sharing Platform Labora-
tories.

He received the B.E., M.E., and Dr.Eng.
degrees from the University of Tokyo, Tokyo, in
1976, 1978, and 1988, respectively. He is a mem-
ber of IEICE of Japan and the International
Association for Cryptologic Research.

Masayuki Abe
Distinguished Research Scientist, Okamoto

Research Laboratory, NTT Information Sharing
Platform Laboratories.

He received the B.E. and M.E. degrees in elec-
trical engineering from the Science University of
Tokyo, Tokyo, in 1990 and 1992, respectively,
and Ph.D. degree from the University of Tokyo,
Tokyo, in 2002. He joined NTT Network Infor-
mation Systems Laboratories in 1992 and
engaged in the development of fast algorithms
for cryptographic functions and their software/
hardware implementation and the development
of a software cryptographic library. He is a mem-
ber of the Institute of Electronics, Information
and Communication Engineers (IEICE) of Japan
and the Information Processing Society of
Japan.

Koutarou Suzuki
Research Scientist, Information Security Proj-

ect, NTT Information Sharing Platform Labora-
tories.

He received the B.S., M.S., and Ph.D. degrees
from the University of Tokyo, Tokyo, in 1994,
1996, and 1999, respectively. He joined NTT
Information Sharing Platform Laboratories in
1999. He has been engaged in research on public
key cryptography, especially on cryptographic
protocols and digital signatures. He is a member
of IEICE and the Information Processing Society
of Japan. He received the SCIS Paper Award
from IEICE in 2002.

