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1.   Introduction

There are several types of voting systems. Open 
ballot voting is a system in which voters write their 
own names on their ballots for self-identification and 
to prevent double voting. In such a voting system, the 
privacy of the voters is not guaranteed. If voter pri-
vacy is desired, an anonymous voting system is better 
than open ballot voting. To achieve fair anonymous 
voting, the voting scheme should satisfy the follow-
ing requirements.

1.	Correctness: A valid vote by an authorized voter 
should be counted correctly and an invalid vote 
should not be counted. This is known as the one-voter 
one-vote principle.

2.	Anonymity: Voters should be able to vote anony-
mously.

3.	Receipt-freeness: Voters should not be able to 
prove how they voted to prevent a buyer or coercer 
from corrupting voters.

Unlike in open ballot voting, in anonymous voting 
we need to achieve correctness while keeping ano-
nymity. Since this is a challenging issue for cryptog-
raphy, there has been a lot of research on crypto-

graphic anonymous voting schemes. However, almost 
all existing practical electronic voting schemes that 
satisfy these requirements are based on the computa-
tional complexity assumption of discrete logarithm or 
integer factoring, which will be broken by quantum 
algorithms. Therefore, when a quantum computer is 
made in the future, we will lose almost all our practi-
cal electronic voting schemes.

On the other hand, quantum information technolo-
gy (QIT), which includes quantum communications 
and quantum computation, should be suitable for 
constructing a voting scheme because it is difficult to 
make a copy of an unknown quantum state in quan-
tum physics. That is, if an unknown quantum state is 
used for a ballot, it is hard to forge, which is very suit-
able for a voting scheme. 

In this paper, we describe the new concept of quan-
tum voting. The anonymity of the protocol is guaran-
teed unconditionally because the ballots can be ran-
domized by voters. Correctness, i.e., the one-voter 
one-vote principle, is guaranteed by a quantum com-
plexity assumption called one-more unforgeability, 
which means that it is impossible to forge an addi-
tional valid ballot.

We also present a cut-and-choose protocol and a 
distributed protocol for preventing the administrator 
from dishonestly executing procedures. In a distrib-
uted version of our scheme, no central entity (center) 
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knows enough of the whole secret to issue blank bal-
lots, which is better in terms of keeping secrecy.

1.1   Related work
Quantum voting: There have been a few proposals 

of quantum voting schemes [1], [2] for specialized 
situations. The key technique of these voting schemes 
is distributing quantum entanglement for obtaining 
anonymity. Unlike those schemes, ours does not use 
quantum entanglement, so it should be easier to 
achieve and be more flexible for various circum-
stances.

Electronic voting: There have been many propos-
als of classical electronic voting schemes. They can 
be classified into three approaches: (1) blind-signa-
ture-based schemes [3]–[5], (2) mix-net-based 
schemes [6]–[10], and (3) homomorphic-encryption-
based schemes [11]–[14]. Some of these achieve 
receipt-freeness [12] under the assumption of a one-
way untappable channel [5], [8], [15] or two-way 
untappable channel [12], [16], [17].

2.   Our quantum voting scheme

Let  be a 2-dimensional Hilbert space, i.e., the 
space of a 1-qubit state and let ⊗k be the k-times 
tensor product of , i.e., the space of the k-qubit 
state. We define 1-qubit state | a, b  ∈  as

|  0, 0  = |0 ,
|  1, 0  = |1 ,

|  0, 1  = 1
√−2 (|0  + |1 ),

|  1, 1  = 1
√−2 (|0  − |1 ).

						      �(1)

The value of b determines the basis: if b is 0, then a 
is encoded in basis Z; if b is 1, then a is encoded in 
basis X. This encoding is the same as BB84 quantum 
cryptography [18] or conjugate coding [19]. Similar-
ly, the qubit measurement is performed in basis Z or 
X if the measurement basis b is specified to be 0 or 1, 
respectively.

For basis K = (b1, ..., bn+1) ∈{0, 1}n+1 and r = (a1, ..., 
an+1) ∈{0, 1}n+1, we denote

|φr, K  = | a1, b1  ⊗ ... ⊗ | an+1, bn+1  ∈ ⊗(n+1). � (2)

We call state |φr, K  a blank piece with respect to 
basis K if an+1 = a1 ⊕ ... ⊕ an. A blank piece is a frac-
tion of a blank ballot, as described later.

For the measurement of an (n+1)-qubit state  ∈
⊗(n+1) in basis K = (b1, ..., bn+1) ∈{0, 1}n+1, we say 

that the measurement result is valid if the result a~1, ..., 
a~n+1 satisfies a~n+1 = a~1 ⊕ ... ⊕ a~n. Note that if we 
measure blank piece |φr, K  in basis K, the measure-
ment result is always valid.

2.1   One-more unforgeability
Now, we define the one-more-unforgeability 

assumption, on which our quantum voting scheme is 
constructed. We consider the following game involv-
ing adversary F that models an adversarial voter who 
tries to forge blank pieces, i.e., tries to create a total 
of (  + 1) blank pieces when given  blank pieces.

Let adversary F be a polynomial-time quantum 
Turing machine and n be a security parameter. At the 
beginning of the game, basis K = (b1, ..., bn+1) ∈ 
{0, 1}n+1 is selected uniformly. Adversary F is given 

 (which is polynomial in n) blank pieces |φrj, K  ∈
⊗(n+1) ( j = 1, ..., ) with respect to basis K. Here, rj 

= (aj, 1, ..., aj, n+1)∈{0, 1}n+1, aj, 1, ..., aj, n are selected 
uniformly, and aj, n+1 = aj, 1 ⊕ ... ⊕ aj, n ( j = 1, ..., ). 
Note that F is not given K and rj. Finally, adversary F 
outputs a ( +1)(n+1)-qubit state  ∈ ⊗( +1)(n+1).

We define the advantage Adv(F) of adversary F as 

Adv(F) = |Pr[  ← F(|φr1, K  ,..., |φr , K ) : (a~j, 1, 

..., a~j, n+1) is valid for all j = 1, ..., +1] − 1
2

|,						      �(3)

where (a~j, 1, ..., a~j, n+1) are the measurement results of 
the j-th (n+1) qubits of  in basis K and the probabil-
ity is taken over the choice of K, the choice of rj 
( j = 1, ..., ), and the postulate of quantum measure-
ment.

Assumption. (One-more unforgeability) We say 
that the one-more unforgeability assumption holds if, 
for every polynomial-time quantum adversary F, the 
advantage Adv(F) is negligible with respect to secu-
rity parameter n.

2.2   Quantum voting protocol
In this subsection, we describe our quantum voting 

protocol. The anonymity of this protocol is guaran-
teed unconditionally, and correctness is guaranteed if 
the one-more-unforgeability assumption holds.

Let n be a security parameter and m = O(n) be the 
bit length of the voting message. There are an admin-
istrator A, counter C, and  voters Vi (i = 1, ..., ). We 
assume (1) an authenticated channel, where sender 
and receiver are authenticated, from administrator A 
to voter Vi and (2) a sender-anonymous channel, 
where the sender is anonymous and the receiver is 
authenticated, from voter Vi to counter C. For sim-
plicity, we assume that these channels are secure, i.e., 
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error-free. Counter C is assumed to carry out proto-
cols correctly; otherwise, the result of voting could be 
manipulated as C desired. C just acts as a fair proce-
dure and other aspects of security do not especially 
depend on his existence, i.e., C does not have any 
secrets of his own and all results of measurement are 
published.

Issuing. Administrator A uniformly selects a secret 
K = (b1, ..., bn+1) ∈{0, 1}n+1. Then, for i = 1, ..., , 
administrator A selects r i = (r i

1, ..., r i
m) = (ai

1, 1, ..., 
ai

1, n+1, ..., a
i
m, 1, ..., a

i
m, n+1) ∈{0, 1}m(n+1), where ai

j, 1 ... 
ai

j, n (j = 1, ..., m) are selected uniformly and ai
j, n+1 = 

ai
j, 1 ⊕ ... ⊕ ai

j, n (j = 1, ..., m), and constructs a blank 
piece |φri

j, K
 and a blank ballot

|η i  = |φr i
1, K  ⊗ ... ⊗ |φr i

m, K . � (4)

A blank ballot is depicted in Fig. 1. 
Administrator A sends the blank ballot |η i  to voter 

Vi through the authenticated channel.
Randomization. Voter Vi receives the blank ballot 

|η i  from administrator A through the authenticated 
channel. He selects ti = (ti1, ..., t

i
m) = (di

1, 1, ..., d
i
1, n+1, ..., 

di
m, 1, ..., d

i
m, n+1) ∈{0, 1}m(n+1), where di

j, 1 ... d
i
j, n (j = 1, 

..., m) are selected uniformly and di
j, n+1 = di

j, 1 ⊕ ... ⊕ 
di

j, n (j = 1, ..., m), and obtains a randomized blank bal-
lot

|η i  = U(ti)|η i , � (5)

where U(ti) = U1
(ti

1) ⊗ ... ⊗ Um
(ti

m) and Uj
(ti

j ) = Ydi
j, 1 ⊗ ... ⊗ 

Ydi
j, n+1, where Y = XZ = 0

1  
−1

0
 and Y0 = I = 1

0  
0
1

.

A randomized blank ballot is depicted in Fig. 2.
Remark: The unitary transformation Y flips a for 

both bases Z and X. Sometimes, it also changes the 
global phase, but no one can distinguish the differ-
ence in global phase. Consequently, the global phase 
change caused by Y does not affect the user’s ano-
nymity.

Remark: Since each blank ballot has a randomly 
chosen pattern of information r i, if a voter utilizes a 
blank ballot without any modification, the adminis-
trator may be able to trace the ballot by recording r i, 
so the voter’s privacy cannot be guaranteed.

Voting. Let M ⊂ {0, 1}m be the set of all the valid 
voting messages, where the number of valid voting 
messages |M| is constant for security parameter n and 
m = O(n), so the probability that a random bit string 
becomes a valid voting message is negligible for n. 
On the randomized blank ballot |η i , voter Vi writes 
his/her voting message ci = (ci

1, ..., c
i
m) ∈M ⊂ {0, 1}m, 

where ci is the name of the candidate for whom voter 
Vi wants to vote. Voter Vi makes his/her voting ballot

|η (ci)  = U(ci)|η i , � (6)

where U(ci) = U1
(ci

1) ⊗ ... ⊗ Um
(ci

m), Uj
(ci

j ) = I ⊗ ... ⊗ I ⊗ Yci
j. 

A voting ballot is depicted in Fig. 3. Voter Vi sends the 
ballot |η (ci)  to counter C through the sender-anony-
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Fig. 1.   Quantum blank ballot |η i .
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mous channel.
Counting. Counter C receives secret K from 

administrator A through a classical secure channel 
after all voters have sent their votes. He receives all 
ballots |η (ci)  (i = 1, ..., ) from all voters Vi (i = 1, ..., 
) through the sender-anonymous channel. He mea-

sures all ballots |η (ci)  (i = 1, ..., ) and obtains the 
measurement results (a~j

i
, 1, ..., a~j

i
, n+1) (i = 1, ..., , j = 

1, ..., m), where (a~j
i
, 1, ..., a~j

i
, n+1) are the measurement 

results of j-th (n+1) qubits of |η (ci)  in basis K = (b1, 
..., bn+1). He computes c~j

i = a~j
i
, 1 ⊕ ... ⊕ a~j

i
, n+1 (i = 1, ..., 

, j = 1, ..., m), and checks whether or not c~i = (c~i
1, ..., 
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Fig. 2.   Randomized quantum blank ballot |η i .
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c~i
m) ∈M ⊂ {0, 1}m. If c~i ∈M, then c~i is counted as the 

result of the voting; otherwise, c~i is discarded.

2.3   Cut-and-choose protocol for issuing
If a malicious administrator issues invalid blank 

pieces, correctness and anonymity can be violated 
because the administrator can nullify and/or trace a 
ballot by mixing invalid pieces into it. To avoid the 
risk of this, we can use a cut-and-choose technique to 
verify the validity of blank pieces issued by the 
administrator. Our cut-and-choose protocol is 
explained below.

In the issuing stage, administrator A creates 2m  
blank pieces |φr, K  and puts them in register R. Each 
voter Vi randomly picks m blank pieces as his/her 
blank ballot |η i .

Before the counting stage, after all voters have cast 
their votes, counter C receives secret K from admin-
istrator A through a classical secure channel and per-
forms the following check. Counter C measures mv 
blank pieces left in register R using secret basis K and 
checks whether or not all the results of these measure-
ments are valid. If some are found to be invalid, we 
judge that administrator A issued invalid blank pieces 
and abort the voting process.

Note that a malicious administrator can mingle a 
small number of invalid blank pieces into a voter’s 
blank ballot without detection even if we use the cut-
and-choose protocol.

2.4   The t-out-of-l threshold protocol for issuing
Here, we present a threshold distributed protocol 

based on threshold quantum cryptography. If an 
administrator who knows secret K illegally casts a 
valid voting ballot in the voting stage, or dishonestly 
gives secret K to adversaries, then the adversaries can 
freely forge ballots as they like. To avoid the risk of 
this, a distributed scheme is very effective. In such a 
scheme, several centers each hold a share of secret K, 
and these centers collaborate to create blank pieces.

In this t-out-of-l threshold distributed protocol, 
each center chooses its secret by itself and distributes 
shares of its own secret. Once the secrets have been 
shared among l centers, an arbitrary t-out-of-l centers 
can issue valid blank pieces. After the preliminary 
secret distribution phase, even if l−t centers happen to 
be down or out of service, at least t centers will still 
work properly, so the whole scheme works correctly. 
Moreover, if the number of dishonest centers is 
smaller than t, they cannot make valid quantum bal-
lots. We apply a threshold technique such as Shamir’s 
secret sharing scheme [21] (i.e., t-out-of-l scheme) 

for this threshold distributed protocol. We also apply 
Pederson’s idea [22] that several centers share their 
own secrets.

Distribution. For l centers to distribute shares of 
their secrets, all centers Pj out of the l centers perform 
the following procedure.

Pj chooses its own secret σ j = (bj, 1, bj, 2, ..., bj, n+1), 
where bj, k are uniformly chosen from {0, 1}.

The center Pj then makes l shares, Sj, 1, ..., Sj, l, of σ j 
by using Shamir’s secret sharing scheme over GF(2N), 
where N = n+1. Let fj ( ) be a secret (t−1)-th-degree 
polynomial, Sj, i = fj ( j, i) for i = 1, ..., l, and σ j = fj(0) 
over GF(2N), where j, i for i = 1, ..., l are l distinct 
points in GF(2N) and are published. The center Pj 
sends Sj, i to a center Pi secretly for each i = 1, ..., l.

Precomputation. For simplicity, we assume that 
the t centers P1, ..., Pt collaborate to issue blank 
pieces.

For each i = 1, ..., t, Pi calculates and secretly stores 
the following value using the Lagrange interpolation 
formula

Ki =  
l

Σ
j=1

 Sj, i
1≤ ≤

∏
t, =/ i

 j, 

j,  − j, i
 ∈GF(2N). � (7)

Let 

K[i] = (b[i]
1 , b[i]

2 , ..., b
[i]
n+1)∈GF(2N) � (8)

be the binary representation of Ki in GF(2N), where b[i]
k 

are in {0, 1}. The whole secret is

K =  
t

Σ
i=1

 Ki =  
l

Σ
j=1

 σ j ∈GF(2N). � (9)

Note that even in the collaboration procedure, Ki 
and σ j are kept secret in Pi, and K is not recovered.

Issuing. The t centers P1, ..., Pt collaborate to con-
struct a blank piece |φ . Below, we describe the 
sequential protocol from P1 to Pt, but the order is not 
essential: any order is possible.

P1 generates a quantum state

|φ [1]  = | a1
[1]b1

[1]  ⊗ ... ⊗ | a[1]
n+1b[1]

n+1 , �(10)

where r[1] = (a1
[1], ..., an

[1]), ∈{0, 1}n is a random string 
uniformly picked by P1 for each blank piece, and a[1]

n+1 
= a

1
[1] ⊕ ... ⊕ an

[1]. Here, | a i
[1]bi

[1]  is defined in the same 
manner as in Eq. (1).

Next, P1 sends |φ [1]  to P2. When Pi receives |φ [i−1]  
from Pi−1, Pi follows the following procedure to gen-
erate |φ [i]  and sends it to Pi+1, where i = 2, ..., l and 
Pl+1 is a voter.

Then, Pi obtains |φ [i]  by applying the following 
unitary transformation W[i] to |φ [i−1] .
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|φ [i]  = W[i] |φ [i−1] , �(11)
where 

W[i] = Y[i] H[i], Y[i] = Ya[i
1

]
 ⊗ ... ⊗ Ya[i]

n+1, H[i] = 
Hb[i

1
]
 ⊗ ... ⊗ Hb[i]

n+1.
					   

� (12)

Here, a[i]
n+1 = a1

[i] ⊕ ... ⊕ an
[i], r[i] = (a1

[i], ..., an
[i]), 

∈{0, 1}n is a random string uniformly picked by Pi 
for each blank piece, unitary transformation Y fol-
lows the previous definition in Subsection 2.2, and

H = 

1
√−2
1
√−2

  −

1
√−2
1
√−2

, H0 = I = 1
0  

0
1

.
		

	
�

(13)

After repeating this procedure, finally Pl sends |φ [l]  
to a voter as a blank piece.

Correctness. |φ [1]  encodes string a1
[1], ..., a[1]

n+1 
using secret bases K[1]. By unitary transformation 
W[2], |φ [1]  is transformed into |φ [2]  (here, we ignore 
the global phase), which encodes a1

[1] ⊕ a1
[2] , ..., a[1]

n+1 
⊕ a[2]

n+1 using basis K[1] ⊕ K[2]. Finally, |φ [t]  encodes 
a1

[1] ⊕ ... ⊕ a1
[l] , ..., a[1]

n+1 ⊕ ... ⊕ a[l]
n+1 using basis K = 

K[1] ⊕ K[2] ⊕ ... ⊕ K[l]. Thus, the quantum ballot |φ [l]  
is valid.

Security. If we assume that the communication 
among l parties during their collaboration is protected 
from adversaries and that the l parties are honest, then 
the security of the threshold scheme is at least on the 
same level as the original voting scheme.

3.   Security of our quantum voting scheme

3.1   �Security considerations for voting require-
ments

Correctness. First, we consider an active attack by 
a voter who tries to forge ballots. In this case, secu-
rity will depend on the quantum computational com-
plexity problem, i.e., one-more unforgeability (the 
Assumption in Subsection 2.1), whose hardness is 
not clearly understood yet, so conclusive security is 
beyond the scope of this paper. Here, we show that 
several naïve attacks cannot work well. It is impossi-
ble to simply make a copy of an unknown quantum 
state in principle according to the no-cloning theo-
rem. If a forger (including a voter) tries to make a 
quantum ballot without knowing secret K, i.e., ran-
domly makes a forged quantum ballot, the forged 
ballot |  is accepted with probability |M|/2m. Since 
the number of candidates |M| is constant, the proba-
bility of successful forging is negligible. If K is 
derived from valid blank ballots, an adversary can 

forge valid ballots freely. However, deriving secret 
key K is intractable, as described in Subsection 3.2. 
So, it is difficult for a dishonest voter to forge quan-
tum ballots in our scheme.

Next, we consider an active attack by the adminis-
trator. If the administrator mixes k invalid blank 
pieces into 2mv blank pieces in the issuing stage, we 
can detect invalid blank pieces with probability 
1–1/2k using our cut-and choose protocol for issuing. 
If an invalid blank piece is detected, we abort the vot-
ing. The invalid blank pieces pass through the check-
ing stage with probability 1/2k, so in this case, the 
administrator can nullify at most k unspecified 
votes.

Anonymity. A voter cannot break the privacy of 
another voter because he is isolated from the other 
voter’s procedures and the communication channels 
are protected to make them secure. Thus, we consider 
only an active attack by the administrator.

Since all quantum voting ballots are sent through an 
anonymous channel, if there is no identifiable infor-
mation in a ballot, then the privacy of voting is kept. 
The administrator can record randomness r encoded 
in blank ballot |η  in order to try and break the privacy 
of voters. To prevent this, the voter randomizes |η  by 
applying random unitary transformation U with ran-
domness t and obtains randomized blank ballot |η  
with randomness r  = r ⊕ t. Since t is uniformly 
selected by the voter, the original randomness r is 
unconditionally concealed and privacy is protected.

Although the administrator can mix k invalid blank 
pieces into 2m  blank pieces in the issuing stage to 
trace votes and break privacy, we can detect the 
invalid blank pieces in the register with probability 
1–1/2k using our cut-and choose protocol. If an 
invalid blank piece is detected, we abort the voting 
and discard the quantum voting ballots held by coun-
ter C. Therefore, in this case, votes are never revealed 
and privacy is protected. The invalid blank pieces 
pass through the checking stage with probability 1/2k. 
In this case, the administrator can invalidate at most k 
unspecified votes and break the privacy of at most k 
unspecified voters.

Receipt-freeness. A voter might try to embed some 
information into his/her voting ballot |η (c)  in order to 
prove his/her vote to a buyer/coercer. However, since 
the voter does not know randomness r encoded in 
blank ballot |η , he/she cannot control randomness r  
encoded in blank ballot |η . If the voter mixes errors 
into the name of candidate c encoded in his/her voting 
ballot |η (c) , then voting ballot |η (c)  can be traced, but 
it will be discarded and not counted.
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A voter might try to copy his/her voting ballot |η (c)  
to make a receipt for the vote buyer/coercer. However, 
it is difficult to copy quantum voting ballot |η (c) , as 
already described in Correctness.

3.2   �Intractability of finding secret key K
Let us consider a straightforward individual attack 

on our voting scheme. An adversary F is given a 
blank ballot |φ  = |φ r1, K  ⊗ ... ⊗ |φ rm, K  and examines 
the basis K by measuring quantum bits individually 
as follows. First, F guesses K from {0, 1}n+1 and mea-
sures |φ rj, K  with the basis and gets the result (a~j, 1, ..., 
a~j, n+1). If the guess of K is correct, then all the results 
are valid i.e., a~j, n+1 = a~j, 1 ⊕ ... ⊕ a~j, n for all j. Then, 
F is assured that his guess is correct and he has 
obtained the correct K. The guess of bk of K = (b1, ..., 
bn+1) is correct with probability 1/2, so the probability 
that guesses of all bk for k = 1, ..., n+1 are correct is 
only 1/2n+1. Therefore, the secrecy of K against the 
simple individual attack is proven.

It has been pointed out that a Grover-type attack is 
applicable to this construction [23] if we allow F to 
use a general (coherent) attack. However, it still needs 
exponential time quantum computation. Grover’s 
algorithm [24] has been proven to be optimal within 
the query-type algorithm to find a unique solution 
from a database [25]–[27]. Thus, F needs another 
type of algorithm to get secret bases efficiently, but 
no efficient attack has been found yet. In our scheme, 
the parity of random bits aj, 1 ⊕ ... ⊕ aj, n = aj, n+1 is 
encoded in | aj, n+1, bn+1  of |φrj, K  and the rest of |φrj, K  
is a totally random state for voters who do not know 
K. The construction of our scheme is very simple and 
it seems to be difficult to find another type of algo-
rithm that is not a query-type algorithm. Although the 
difficulty has not been proven, it might be reduced to 
the difficulty of a well-known computational com-
plexity problem such as [28], which is believed to be 
difficult even for a quantum computer. We leave this 
complexity as an open problem.

4.   Concluding remarks

In this paper, we described a new cryptographic 
protocol concept, quantum voting. The anonymity of 
the protocol is unconditionally guaranteed, and cor-
rectness is guaranteed if the one-more-unforgeability 
assumption holds. We also presented a cut-and-
choose protocol and a distributed protocol for pre-
venting the administrator from dishonestly executing 
procedures.

In this paper, we just assumed that the quantum 

channel is secure (error-free) for simplicity. We could 
eliminate this assumption by constructing a secure 
quantum channel using a quantum one-time pad [29], 
[30] or using some other means.

We leave the analysis of quantum computational 
complexity as an open problem. Although the secu-
rity of our protocol is based on quantum computa-
tional complexity and does not have unconditional 
security, it should have many applications in quantum 
information technology.

To implement a quantum voting scheme, we need a 
quantum register/memory. Since our scheme does not 
make use of quantum entanglement, a sufficient reg-
ister for our scheme is one of the most basic elements 
of quantum computers, that is, a 1-qubit register that 
need not keep quantum correlation between two 
quantum bits. (The situation will be different when 
we implement quantum error correction.) Even such 
a quantum register is still beyond our current tech-
nologies. However, such technologies are being 
extensively studied and developed. In addition, the 
operation needed for our scheme is very simple, only 
1-qubit unitary transformation, which is already fea-
sible.

Finally, we emphasize that the use of a quantum 
state to achieve a voting scheme should be an attrac-
tive and fruitful research approach. The work 
described in this paper is the first step in this direc-
tion.
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