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1.   Introduction

When two users want to exchange messages 
securely, they can use encryption as long as both of 
them know the secret key. We consider the situation 
in which legitimate users Alice and Bob and an eaves-
dropper Eve each has access to a correlated source. 
To transmit messages securely, Alice and Bob must 
agree on a secret key. Secret key agreement, which is 
introduced in [1], is the procedure for agreeing on a 
secret key by exchanging messages over a public 
channel (see Fig. 1). The colored arrows indicate 
information disclosure.

The above situation can be achieved by introducing 
the scenario presented in [1] (see Fig. 2). In this sce-
nario, a satellite broadcasts messages U that are 
unknown to Alice, Bob, and Eve. They have antennas 
that enable them to receive the messages. Inevitably, 
there is noise between the satellite and each antenna: 
these noises are independent. Thus, Alice, Bob, and 
Eve have access to correlated sources (X, Y, Z), which 
are the respective outputs of mutually independent 
channels with the input corresponding to the broad-
cast message. It should be noted that there is another 
scenario related to quantum cryptography [2]. By 

using a quantum channel, Alice and Bob can share a 
correlated sequence, while Eve can also acquire a 
sequence that is correlated with that of Alice and Bob 
by wiretapping the quantum channel (see Fig. 3).

To understand how secret key agreement is per-
formed, we present an example of correlated sources 
that was introduced in [3]. Assume that there are only 
four cards {♠ , ♠ , ♥ , ♥ }. A trusted dealer 
shuffles these four cards and deals them to Alice, 
Bob, and Eve. Alice and Bob execute the following 
key agreement protocol at each deal.

1.	�Alice and Bob each reveals the suit of their own 
card.

2.	�If they know that they both have the same suit, 
they agree on the key ‘0’ if Alice has the king, 
which implies that Bob has the queen and the key 
‘1’ if Alice has the queen, which implies that Bob 
has the king.

3.	�If they know that they have different suits, they 
give up trying to agree on a key in this round and 
discard this deal.

In Fig. 4(a), let us assume that we are Bob. Bob has 
♥  and knows that Alice also has ♥. Therefore, we 
can conclude that Alice must have ♥  and we can 
agree on the key ‘1’. In Fig. 4(b), let us assume that 
we are Eve. Eve knows that both Alice and Bob have 
♥, but she cannot know that who has ♥  or who has 
♥ , even when she has the other two cards. This 
implies that Alice and Bob can agree on 1 bit for a 
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secret key. In Fig. 4(c), let us again assume that we 
are Bob. Bob has ♥  and knows that Alice has ♠, but 
not whether it is ♠  or ♠ . In this case, Alice and 
Bob give up trying to achieve key agreement for this 
deal because neither of them can determine the part-
ner’s card.

The following are important goals in the study of 
secret key agreement.

1.	�Design a secret key agreement protocol that is 
practical.

2.	�Estimate the secret key capacity, which corre-
sponds to the optimal efficiency of the secret key 
generation.

3.	�Estimate the supremum of the secret key capac-
ity over a class of correlated sources.

It should be noted that the secret key capacity esti-
mation is necessary in order to design a secure sys-
tem.

This paper deals with the following topics. In sec-
tion 2, we review the formal definition of the secret 

key agreement protocol and the secret key capacity 
introduced by Maurer [1]. Section 3 describes a 
scheme for secret key agreement using correlated 
sources. We obtain the result that there is a pair of 
sparse matrices, known as low-density parity check 
(LDPC) matrices, that yields secret key agreement 
using correlated sources. Algorithms using sparse 
matrices are known to have practically efficient 
decoding algorithms such as the Belief Propagation 
(BP) algorithm [4] and Linear Codes Linear Program 
(LCLP) algorithm [5]. By using LDPC matrices with 
one of the practical decoding algorithms, our con-
struction is computationally efficient. However, it 
should be noted that information reconciliation is 
performed only approximately. In section 4, we intro-
duce the advantage distillation capacity, which pro-
vides a naïve information theoretical expression for 
the secret key capacity introduced in [6], which is the 
least upper bound of the key generation rate of the 
secret key agreement. In section 5, we investigate the 
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capacity for secret key agreement under a sampling 
attack. We analyze the supremum of the normalized 
secret key capacity defined as the supremum of the 
secret key capacity divided by the description length 
of the alphabet*, where the supremum is taken over 
some class of correlated sources. In particular, we 
consider symmetric sources and derive inequalities 
that show the scaling of the secret key capacity.

2.   Definition of secret key agreement protocol 
and secret key capacity

The secret key capacity, which is the least upper 
bound of the key generation rate in the secret key 
agreement, was first introduced by Maurer [1]. 
Before defining it, we define the protocol that 
describes the procedure of Alice and Bob. Let X, Y, 
and Z be three sources available to Alice Bob, and 
Eve, respectively. Let Xn ≡ (X1, X2, …, Xn), Yn ≡ (Y1, 
Y2, …, Yn), and Zn ≡ (Z1, Z2, …, Zn). The entropy of a 

random variable V, conditional entropy of random 
variable V with given random variable W, and mutual 
information between random variables V and W are 
denoted by H(V ), H(V|W), and I(V;W ), respectively. 
Let Cj

i ≡ (Ci, …, Cj) for i ≤ j; here, the symbol Cj
i is 

ignored when i > j.
Definition 1: A protocol (Ct

1, X̂, Ŷ ) for (X, Y, Z ) 
with t steps is composed of the following procedure:

1.	�If i is odd, Alice sends Ci over an insecure but 
authenticated channel, where Ci is computed 
from Xn and C1

i−1. If i is even, Bob sends Ci over 
an insecure but authenticated channel, where Ci 
is computed from Yn and C1

i−1.
2.	�Alice and Bob repeat the transmission of Ci 

while 1 ≤ i ≤ t.
3.	�Finally, Alice computes X̂ from Xn and Ct

1, and 
Bob computes Ŷ from Yn and Ct

1.
Formally, random variables (Xn, Yn, Zn, Ct

1, X̂, Ŷ ) 
satisfy the following conditions:

Yn Zn Ct
i+1 X̂ Ŷ ↔ Xn C1

i−1 ↔ Ci if i is odd
Xn Zn Ct

i+1 X̂ Ŷ ↔ Yn C1
i−1 ↔ Ci if i is even

Yn Zn Ŷ ↔ Xn Ct
1 ↔ X̂

Xn Zn X̂ ↔ Yn Ct
1 ↔ Ŷ,

where U ↔ V ↔ W denotes the Markov chain satisfy-
ing pUVW (u, v, w) = pUV (u, v) pW|V (w|v) for all (u, v, 
w).

Definition 2: We call the protocol (Ct
1, X̂, Ŷ ) given 

in Definition 1 a secret key agreement protocol for (X, 
Y, Z) with rate R ≥ 0 if (Ct

1, X̂, Ŷ ) satisfies

Prob (X̂ ≠ Ŷ ) ≤ ε � (1)

I (X̂; Zn, Ct
1)

n
 ≤ ε � (2)

H (X̂)
n

 ≥ R − ε � (3)

for all ε > 0 and all sufficiently large n. The secret key 
capacity S(X;Y||Z) of the sources is defined as the 
least upper bound of such R for all possible key agree-
ment protocols.

Condition (1) means that we can perform a secret 
key agreement with an arbitrarily small error proba-
bility. Condition (2) means that the secret key and 
Eve’s information are mutually independent and she 
cannot obtain any information about the secret key. It 
should be noted that we consider (unconditional) 
information theoretical security [7], which is differ-
ent from computational security [8] such as public 
key cryptography.

Alice BobEve

(c)

Fig. 4.   Example of secret key agreement.

*	 Alphabet: In the context of information theory, an alphabet 
means the set of symbols emitted from a source/channel.
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An open problem has been to give the explicit infor-
mation theoretical expression for the secret key 
capacity for general correlated sources. The upper 
and lower bounds of S(X;Y||Z) are given in [1], [9].

3.   Construction of secret key agreement 
protocol using LDPC matrices

In this section, we assume that I(X; Y) > I(X; Z) and 
that feedback is not allowed in the secret key agree-
ment; that is, t=1. Let mXYZ be the joint distribution of 
(Xn, Y n, Z n). We assume that codes for correlated 
sources (Xn, Yn, Zn) satisfy

H (Xn|Yn) < nRp � (4)

H (Xn|Zn) < nRp + nRk ≤ H (Xn|Zn) + nε � (5)

mXY ({(x, y); ψY (ϕP(x), y) ≠ x}) ≤ ε �

mXZ ({(x, z); ψZ (ϕP(x), ϕK(x), z) ≠ x}) ≤ ε �

for any ε > 0 and all sufficiently large n, where (x, y, 
z) is the output of (Xn, Yn, Zn). Such codes can be 
constructed by using the LDPC matrices proposed in 
[10]. Let X be a finite field and x∈Xn be represented  

by a column vector. Let P and K be nRP × n and  

nRK × n LDPC matrices, respectively. We next 
define jP and jK by

jP (x) ≡ Px �

jK (x) ≡ Kx. �

We define ψY and ψZ by

ψY (b, y) ≡ arg max mXY (x', y)
x':Px=b

�

ψZ (b, b', z) ≡ arg 
x':
max mXZ (x', z).
Px'=b
Kx'=b'

�

A secret key agreement protocol is constructed 
below.

1.	Alice transmits C1 ≡ jP(Xn) to Bob.
2.	�Alice generates a secret key by X̂ ≡ jK (Xn). Bob 

generates a secret key by Ŷ ≡ jK (ψY (C1, Yn)).
The error probability of the secret key agreement is 

expressed by
Prob (X̂ ≠ Ŷ ) 

= mXY ({(x, y): ϕK (ψY (ϕP(x), y)) ≠ ϕK(x)}).
We have the following theorem. The proof is given 

in [10].
Theorem 1: Assume that mXYZ satisfies Eqs. (4) and 

(5). There are LDPC matrices K and P such that the 

above secret key agreement protocol (C1, X̂, Ŷ ) satisfies

Prob (X̂ ≠ Ŷ ) ≤ δ �

I (X̂; Zn, C1)
n

 ≤ δ �

H (X̂)
n

 ≥ RK − δ �

for all δ > 0 and all sufficiently large n.

4.   Secret key capacity and advantage 
distillation capacity

In this section, we introduce the advantage distilla-
tion capacity. According to [11], there are three 
phases in a secret key agreement.

Advantage distillation: When the correlation 
between X and Y is weaker than or equal to those 
between X and Z and between Y and Z, i.e.,

I(X; Y) ≤ I(X; Z) and I(X; Y) ≤ I(Y; Z),
the aim of this protocol (Ct

1, X̂, Ŷ ) is to provide Alice 
and Bob with an advantage over Eve; that is,

I(X̂; Ŷ ) > I(X̂; Zn, Ct
1) or I(X̂; Ŷ ) > I(Ŷ; Zn, Ct

1). 
An example of this technique is presented in [1].

Information reconciliation: This technique allows 
Alice and Bob to obtain an identical random sequence 
from the output of (X, Y) by using this protocol while 
minimizing the amount of information leaked to 
Eve.

Privacy amplification: This is a technique for 
obtaining a secret key sequence from the above iden-
tical random sequence.

In section 3, the construction of a combined infor-
mation reconciliation and privacy amplification pro-
tocol was provided by assuming that I(X; Y) > I(X; Z). 
In the following, we focus on an advantage distilla-
tion protocol and investigate the difference [I(X̂; Ŷ ) − 
I(X̂; Zn, Ct

1)]/n of a protocol (Ct
1, X̂, Ŷ ). Let us define 

the advantage distillation capacity.
Definition 3: We call the protocol (Ct

1, X̂, Ŷ ) given 
in Definition 1 an advantage distillation protocol for 
(X, Y, Z) with rate R ≥ 0 if the difference [I(X̂; Ŷ ) − 
I(X̂; Zn, Ct

1)]/n is equal to R; that is,

R = I(X̂; Ŷ ) − I(X̂; Zn, Ct
1)

n
� (6)

The advantage distillation capacity D(X;Y||Z) of 
the sources is defined as the least upper bound of such 
R for all possible advantage distillation protocols; 
that is,

D(X;Y||Z) ≡ sup I(X̂; Ŷ ) − I(X̂; Zn, Ct
1)

n
,

n, t, Ct
1, X̂, Ŷ

�

where the supremum is taken over n, t, and random 
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variables (Ct
1, X̂, Ŷ ) generated by a protocol with step t.

It should be noted that conditions (1) and (2) are not 
required for the advantage distillation protocol and 
that condition (3) is replaced by (6). These points are 
the differences from the definition of secret key 
capacity.

We obtain the following theorem in relation to 
secret key capacity and advantage distillation capac-
ity. Proof of this theorem is given in [6].

Theorem 2: Let X, Y, and Z be three sources avail-
able to Alice, Bob, and Eve, respectively. Then, 

S(X; Y||Z) = D(X; Y||Z).
This theorem implies that we can construct an opti-

mum secret key agreement protocol by using an 
advantage distillation protocol achieving advantage 
distillation capacity and a combined information rec-
onciliation and privacy amplification protocol with 
rate [I(X̂; Ŷ ) − I(X̂; Zn, Ct

1)]/n for distilled sources (X̂, 
Ŷ, (Zn, Ct

1)). The function D(X; Y||Z) provides infor-
mation theoretical expressions of secret key capacity. 
It should be noted here that this expression is not a 
single-letter characterization and that the alphabets of 
random variables and the number of steps of a proto-
col are not bounded in the supremum. The single-let-
ter characterization of the secret key capacity is pre-
sented in [9] for some particular source examples.

5.   Secret key capacity for optimally correlated 
sources under a sampling attack

In the following, we investigate the satellite sce-
nario introduced in [1], where three sources (X, Y, Z) 
have a common latent random variable U, and X, Y, 
and Z are the respective outputs of mutually indepen-
dent channels for input U. Let U be the finite alphabet 
of U. Then, the joint probability distribution mXYZ of 
(X, Y, Z) is given by

mXYZ (x, y, z) 

≡ Σ
u∈U

PX|U (x|u) PY|U (y|u) PZ|U (z|u) PU (u),

�

where PX|U, PY|U, and PZ|U are the conditional proba-
bility distributions of the respective channels and pU 
is a probability distribution corresponding to U. 
Then, we have

S(X; Y||Z) ≤ I(X; Y|Z) ≤ H(U|Z) � (7)

for any random variable (X, Y, Z) with a common 
latent variable U, where the left inequality is given in 
[1]. Inequality (7) implies that the secret key capacity 
of the satellite scenario is zero if Eve has access to the 
latent variable.

Next, we consider the situation where Eve obtains 
m samples zm∈Zm. Then, the joint probability corre-
sponding to (X, Y, Zm) is expressed by

mXYZ (x, y, zm) 

≡ Σ
u∈U

PX|U (x|u) PY|U (y|u) 
m  

Π
i=1

PZi|U (zi|u)  PU (u).

�

Furthermore, we assume that pZi|U does not depend 
on i and we denote it by pZ|U. Then, from Eq. (7) and 
the result presented in [12], there exists a ≥ 0 such 
that

S(X; Y||Zm) ≤ |U|[|U| − 1]
2  exp (− a m), � (8)

where |•| denotes the cardinality of a set. This 
inequality implies that it becomes easier for Eve to 
predict the latent parameter U by a sampling attack 
and that the secret key capacity decreases exponen-
tially as the number of Eve’s samples increases when 
a > 0.

In the following, we assume that the statistical 
properties of the correlated source can be adjusted for 
a given number of Eve’s sources in order to optimize 
the secret key capacity. It should be noted here that it 
may be possible to increase the secret key capacity by 
increasing the size of the alphabet. In fact, the upper 
bound of Eq. (8) can be relaxed by increasing the 
alphabet size. On the other hand, it is natural to con-
sider the cost of receiving one random symbol. For 
this reason, we define normalized secret key capacity 
by S(X; Y||Z m)/log2|A|, where A is an alphabet of 
random variables X, Y, Z1 …, Zm. We investigate the 
supremum of the normalized secret key capacity 
under a sampling attack defined in the following.

Definition 4: For a given number m of Eve’s sam-
ples, we define the supremum of normalized secret 
key capacity S̄ (S|m) of the set of sources S by

S̄ (S|m) ≡ sup S(X;Y||Zm)
log2|A|  .(X, Y, Zm) ∈S

�
We introduce the following scenario for the defini-

tion of symmetric sources. A trusted server broad-
casts message U, which is unknown to any users. 
Each terminal receives the message via mutually 
independent noisy channels. Thus, the correlated 
sources (A1, …, Ak) are the respective outputs of 
mutually independent noisy channels with input U. 
We assume that channels have identical characteris-
tics. We call a correlated source (A1, …, Ak) symmet-
ric if there are U, pU, and pA|U such that
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mAk (a1, ..., ak) = Σ
u∈U

PU (u)  
k  

Π
i=1 

PA|U (ai|u), �

where U is the alphabet of U. The following theorem 
states that the supremum of the normalized secret key 
capacity for the class of all symmetric sources is close 
to O(1/m).

Theorem 3: The supremum of the normalized 
secret key capacity for symmetric sources Ssym under 
a sampling attack is bounded by

1 − 1
m + 1  

m

m + 1
 ≤ S̄ (Ssym|m) ≤ 1

m
. �

The proof is given in [3].

6.   Conclusion

We studied the secret key agreement introduced in 
[1], which is a procedure for agreeing on a secret key 
by using correlated source outputs and exchanging 
messages over a public channel. First, we presented a 
practical secret key agreement protocol that uses 
LDPC matrices. Next, we analyzed the advantage 
distillation capacity, which provides a naïve informa-
tion theoretical expression of the secret key capacity. 
Finally, we analyzed the secret key agreement under 
a sampling attack. We observed that the secret key 
capacity decreases exponentially as the number of 
Eve’s samples increases when the distribution of a 
channel is fixed. Then, we analyzed the supremum of 
normalized secret key capacity defined as the supre-

mum of the secret key capacity for all possible 
sources. It is O(1/m) for symmetric sources.
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