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1.   Network requirements in 2020

To support the tremendous increase in the amount 
of Internet traffic, NTT is currently providing a high 
transmission capacity of 1.6 Tbit/s per optical fiber 
(40 Gbit/s x 40 wavelengths) on its backbone net-
work. Assuming that traffic will continue to double 
every two years, the transmission capacity required in 
about ten years (2020) will be at least 100 Tbit/s 
equivalent per optical fiber. Although standardization 
of 100GbE (100-Gbit/s Ethernet) technology and 
100-Gbit/s-level optical transport network technolo-
gy is currently proceeding, we will require higher 
speeds and capacities in the future.

When we consider future networks around 2020, 
one important issue for the ultrahigh-speed high-
capacity network to be used as a common platform is 
how to economically provide the ultrahigh capacity 
to support the steady traffic growth rate and the high 
level of reliability needed for business activities and 
people’s daily lives. Moreover, to support continuous 
traffic growth, it will be essential to achieve low 
power consumption for the sake of the global envi-
ronment.

From the service provider’s viewpoint, interactive 

high-definition video transmission such as that used 
in business videoconferencing will become increas-
ingly necessary in the future as a service that decreas-
es the load on the environment. The future ultrahigh-
speed high-capacity network will not only be a com-
mon platform and infrastructure, but will also be 
expected to act as a service network that can allocate 
ultrawideband services of this type (huge-bandwidth 
services). A huge-bandwidth service is defined as one 
that provides circuit-switched, high-capacity, low-
latency, dynamic end-to-end paths. Some examples 
of assumed services are interactive realtime video 
communications and data transmission among stor-
age devices (Fig. 1). Business examples are a super-
high-presence remote conferencing system, remote 
medical support system, and storage mirroring and 
consumer examples are e-commerce based on virtual 
face-to-face sales, remote counseling, remote diagno-
sis, remote teaching, and competitive network games. 
In providing this type of huge-bandwidth service, it 
will be important to achieve ultralow latency that 
eliminates all possible delay elements except for dis-
tance-dependent transmission delay.

2.   Trends in ultrahigh-speed high-capacity  
networks

The provision of low-power-consuming economi-
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cal networks that support ultrahigh capacity, high 
reliability, and extremely low latency will require a 
combination of the following two points: 1) much 
higher speeds and capacities from optical fiber trans-
mission and wireless technologies and 2) efficient 
operation of the network. From the viewpoint of the 
load on the global environment and economy, we can 
no longer allow resource consumption to increase at 
the same rate as capacity; moreover, developments in 
optical transmission and transfer technologies in 
recent years [1] mean that we will soon need to cope 
with the physical limits on optical fiber capacity, 
which have been treated as infinite up to now. The 
latter issue is briefly explained below.

The first physical limit is optical fiber bandwidth. 
Core networks, which must transmit signals over 
long distances, utilize the low-loss wavelength range 
for optical fibers from 1450 to 1650 nm. This 200-nm 
bandwidth corresponds to a frequency bandwidth of 
approximately 25 THz. Based on innovative future 
technology, if we assume that the frequency usage 
efficiency can be increased tenfold from the current 
0.4 bit/s/Hz and that the entire low-loss wavelength 
domain can be utilized, then we will only just manage 

to attain a maximum transmission capacity of 100 
Tbit/s per optical fiber.

The second physical limit is the optical power that 
can be input. As the optical fiber data transmission 
rate increases, we must increase the optical power in 
the optical fiber. The optical transmission power per 
unit transmission capacity in the current transmission 
system is of the order of several tens of milliwatts per 
terabit per second, so if we apply this straightfor-
wardly to 100-Tbit/s transmission, we get a required 
transmission power of several watts. This exceeds the 
threshold (1.5 to 2 W) at which the fiber fuse phe-
nomenon occurs; namely, the optical fiber core 
melts.

Therefore, to support the growth rate of traffic dou-
bling every two years, we must not only fully utilize 
the potential of optical fiber by developing innovative 
optical fiber transmission technologies including 
novel optical fibers that provide even higher speeds 
and capacities, but must also drastically improve the 
network resource utilization efficiency though funda-
mental renovation of the network architecture and 
operation [2] so that the same network resources can 
provide multiple network throughputs (Fig. 2).
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3.   Network architecture

At NTT Research Laboratories, three topics are 
considered to be important for the architecture of the 
ultrahigh-speed high-capacity network.

(1) Simplification of networks that utilize the 
potential of optical technology 

Efforts are underway to simplify networks by intro-
ducing higher-capacity routers but using fewer of 
them and connecting them using high-speed high-
capacity optical paths without any intermediate opti-
cal-to-electrical-to-optical (OEO) regeneration (Fig. 3).

(2) Adaptive access
We are striving to achieve optical and wireless 

access networks that can be customized to each user 
and that can flexibly satisfy the wide-ranging band-
width requirements of each user from a few kilobits 
per second to over 100 Gbit/s. 

(3) Efficient usage of network resources
We are also promoting efforts to ensure connectiv-

ity on a when-needed basis, allocation of just enough 

bandwidth, flexibility in adjusting the network devic-
es for each service (Fig. 4), and dynamic cooperation 
between information and communications technolo-
gy (ICT) resources such as servers and storage and 
the network resources in order to achieve more effi-
cient networking. 

In the next section, we introduce trends in technolo-
gies such as optical core network technology, optical 
access network technology, high-speed wireless 
access technology, and device technology that form 
the basis for supporting these future high-speed high-
capacity networks.

4.   Optical core network technology

4.1   Advanced optical transmission technology
To guarantee the total transmission capacity, which 

comprises a transmission rate of over 40 Gbit/s per 
wavelength and a total of over 10 Tbit/s per fiber, we 
need modulation and multiplexing schemes that 
occupy a narrow spectral bandwidth. For this pur-
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pose, as replacements for the existing optical inten-
sity modulation schemes, the following advanced 
modulation and multiplexing schemes are good can-
didates [3].

•	� Multilevel modulation scheme that transports 
information based on both the phase and inten-
sity of the optical signal

•	� Space multiplexing transmission scheme that 
uses multiple polarization modes and propaga-
tion modes in the optical fiber 

•	� Optical orthogonal frequency division multi-
plexing (OFDM) scheme, which multiplexes 
multiple orthogonal subcarriers at high density

The optical coherent detection scheme can convert 
not only optical signal intensity but also phase infor-

mation into an electrical signal by detecting the beat 
of the signal light and local oscillator light. This 
should not only improve the receiver sensitivity but 
also achieve multilevel and polarized multiplexed 
signal demodulation that makes full use of digital 
signal processing technology and various types of 
transmission distortion equalization.

4.2   Optical transparent network
Besides increasing the per-wavelength bit rate and 

the total system capacity, an important benefit that the 
new transmission technologies will bring is expan-
sion of the optical reach, in other words, the distance 
that an optical signal can travel through multiple 
dense-wavelength-division-multiplexing (DWDM) 
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links and wavelength cross-connects (WXCs) with-
out OEO regeneration. The narrow bandwidth prop-
erties of the modulation and multiplexing technique 
are favorable not only for enhancing the transmission 
performance and spectral efficiency but also for 
reducing the filtering effect caused by passing 
through multiple WXCs, which will considerably 
expand the optical transparent domain. These new 
transmission technologies will open up new perspec-
tives for the design of backbone transport networks, 
changing optical transport networks from opaque to 
transparent. 

In transparent optical transport networks, time-con-
suming manual installation of OEO equipment and 
link-by-link adjustment of optical compensation 
devices will no longer be required at intermediate 
sites. This will substantially reduce the system cost, 
power consumption, footprint, and operating costs. 
Since an optical signal can be copied through simple 
optical power splitting, optical signals can be distrib-
uted economically with low energy consumption by 
optical multicasting. Technology such as generalized 
multiprotocol label switching (GMPLS), which is a 
standard technique introduced in the control plane, 
can be used to control this type of optical network 
dynamically. Furthermore, dynamic cooperation 
between ICT resources (such as servers and storage) 
and network resources should lead to virtualized and 
effective use of all ICT resources [4].

4.3   Elastic optical path
It was initially assumed that huge-bandwidth ser-

vices would be provided using an optimal combina-
tion of optical cross connects and electrical time 
division multiplexing (TDM) cross connects. That is, 
users requiring ultrahigh-capacity paths would be 
provided with fixed-bandwidth optical paths, e.g., 
100 Gbit/s. For users requiring smaller paths, e.g., 10 
Gbit/s, we would groom the electrical paths within 
the optical path by using electrical TDM cross con-
nects. In this way, we could aim to increase the usage 
efficiency of the network.

At NTT Research Laboratories, as the next step, we 
are engaged in research on elastic optical path net-
works [5] in which we can freely adjust the optical 
path capacity (Fig. 4(a)). In an elastic optical path 
network, the capacity of the optical path is not fixed: 
instead, it is expanded or contracted according to user 
request. A transmitter generates an optical signal with 
spectrum of the right size to accommodate the user 
traffic. Accordingly, every optical node on the route 
of the optical path allocates a cross-connection with 

appropriate spectrum bandwidth. When the user traf-
fic increases, the transmitter increases the line capac-
ity, and every optical node on the route expands the 
switching window, which enables the establishment 
of an elastic optical path. In this way, elastic optical 
path networks achieve fine granularity in switching 
capability in the optical domain, and we can expect 
still lower power consumption, space conservation, 
and economization.

5.   Access network technology

5.1   Optical access network technology 
The considerable increase in the volume of com-

munications traffic that has accompanied the current 
rapid diffusion of fiber to the home (FTTH) will 
accelerate the increase in demand for high-speed 
broadband service. The diffusion of FTTH will invite 
further variety and diversity in user demands; for 
example, the bandwidth used by each user will 
expand to encompass a minimum of several kilobits 
per second and a maximum of more than 100 Gbit/s. 
Furthermore, with the recent emphasis on environ-
mental awareness, making communication systems 
that consume less power has become increasingly 
important. In particular, making the entire network, 
which comprises access networks constructed from 
tens of millions of optical network units (ONUs) and 
several million optical line terminals (OLTs), energy 
efficient is an important research theme. Future 
access network construction is an important investi-
gation item on the path toward achieving higher 
speeds, wider bandwidths, and bandwidth with a 
wide dynamic range while suppressing increases in 
power consumption. At NTT Research Laboratories, 
we are striving to establish basic technologies that 
will address these research themes.

In the past, ultrahigh-speed and broadband tech-
nologies for networks were dependent on perfor-
mance improvements in electrical devices. However, 
several years ago we came to realize that we were 
approaching the limit of the electrical device perfor-
mance of this key technology and that we needed 
network construction technology that does not 
depend heavily on device performance. We are inves-
tigating ways to achieve even higher network speeds 
and wider bandwidths based on multi-wavelength 
parallel transmission technology, which can elicit 
maximum performance from both the electrical and 
optical devices.

On the other hand, to handle the increase in the 
range of bandwidths wanted by users as their needs 
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diversify, we are investigating the network’s utiliza-
tion efficiency and power consumption in accommo-
dating the current maximum utilized bandwidth. For 
this purpose, we propose the concepts of an adaptive 
access network (AAN) and a network on demand 
(NoD) instead of the previous static network, where 
the network is dynamically customized to each user 
according to that user’s usage style. We are now 
investigating technologies for realizing these con-
cepts.

In regard to energy conservation in the system, 
which is in conflict with the aims of achieving higher 
speeds and wider bandwidths, we are investigating 
technologies to expand the service area of the optical 
access system using optical characteristics such as 
low-loss and wideband transmission, along with the 
abovementioned AAN and NoD concepts. Among 
these is a technology for achieving improvements in 
the accommodation efficiency that is based on the 
elastic OLT (E-OLT) technology, in which network 
accommodation equipment for each service is 
changed in a virtual manner (Fig. 4(b)).

NTT Research Laboratories has proposed an all-
optical network in which wavelength-based access 
systems and core systems cooperate, and it is con-
ducting research to achieve technology that will pro-
vide an entire network with ultrahigh speed, wider 
bandwidth, lower latency, and lower power consump-
tion. We expect this technology for making an end-to-
end all-optical network, which will carry several-
hundred-gigabit-per-second-class data with low 
latency, to lead to innovative services that have not 
been seen before.

5.2   Terabit LAN technology 
We are pursuing the research and development 

(R&D) of technology for a terabit LAN [6], which is 
a virtual local area network (LAN) constructed on an 
all-optical network. It will provide a multiwavelength 
interface with 10 to 100 Gbit/s per wavelength that 
can be freely divided among multiple destinations. 
Our investigation targets include parallel transmis-
sion technology with various levels of parallelism 
and transport protocols suited to huge-bandwidth 
services with extremely low latency. We expect that 
terabit LAN technology will be used in future net-
works like Ethernet LAN technology is used in cur-
rent optical access networks.

5.3   Ultrahigh-speed wireless access technology 
R&D is being conducted on ultrahigh-speed wire-

less access technology to provide transmission speeds 

from 1 Gbit/s to over 10 Gbit/s utilizing the millime-
ter-wave band (60- and 120-GHz bands). In the 60-
GHz band, we are creating wireless system technol-
ogy that exceeds 10 Gbit/s on the basis of four-chan-
nel multiplexing of about a 2-GHz band per channel. 
Moreover, we are conducting R&D on antenna-inte-
grated millimeter-wave system-in-package technolo-
gy [7], which achieves compactness, high speed, and 
mobility at the same time. This technology should 
lead to a 1-cm3-class battery-driven ultrahigh-speed 
wireless communication device. Furthermore, in the 
120-GHz band, we are collaborating with broadcast-
ing companies in research on ultrahigh-speed devices 
based on InP high electron mobility transistors for 
use in outdoor transmission wireless systems that can 
handle broadcast transmission (uncompressed high-
definition images) [8]. Based on optimization of 
technology currently under development and further 
multi-levelization, we expect wireless super-high-
vision (24 Gbit/s) transmission to be achieved.

6.   Device technology

6.1   Optoelectronic device technology
To achieve ultrahigh-capacity transmission, we 

must increase the bit rate per wavelength and develop 
devices for 100-Gbit/s transmission. In particular, 
because dispersion tolerance and receiver sensitivity 
must be increased, we plan to develop a key compo-
nent of a coherent transceiver, for which digital signal 
processing is a prerequisite. Furthermore, we are 
striving to develop technologies such as planar light-
wave circuit (PLC) technology and microelectrome-
chanical systems (MEMS) technology, and we are 
promoting R&D for devices with new optical func-
tions that will become the core of the optical transpar-
ent network. With the aims of achieving drastically 
lower power consumption in the network and study-
ing the possibility of optical packet switching, we are 
aggressively conducting R&D of optoelectronic-
aggregate-type optical packet router component tech-
nology.

6.2   Optical fiber technology
As optical fiber technology [9] that will support 

future networks, we are conducting R&D of highly 
bendable optical fiber in which the bending loss is 
greatly reduced by introducing a holey structure 
(hole-assisted optical fiber). This will probably lead 
to renovation of the entire optical cable system 
including the introduction of ultrathin cables and 
reforms in closure design. Furthermore, based on 
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advancements in the photonic crystal structure, we 
are striving to make optical fiber that can carry ultra-
wideband, high-power optical signals. We expect 
these technologies to have a significant impact on 
efforts to make an optical transparent network.

7.   Future development

Finally, we present some of our future targets.
•	� Produce innovations to achieve higher-speed 

higher-capacity optical transport technology 
(utilizing high-level modulation technology, 
coherent technology, polarization multiplexing 
technology, digital signal processing technology, 
etc.)

•	� Make the maximum practical use of the potential 
of optical technology (wide area optical access 
networks and transparent optical core network) 
and simplify networks.

•	� Achieve optical and wireless high-speed access, 
flexibly satisfy the wide range of users’ band-
width requirements, and establish adaptive 
access that can be customized to each user.

•	� Use flexible bandwidth control (communication 
using only the required bandwidth at the required 
time) to constrain the number of network devices 
and the amount of power consumed.

•	� Overcome challenges by further innovating opti-
cal device, optical fiber, and optical packet 
switching technologies.

NTT Research Laboratories will continue to col-
laborate with domestic and international research 
institutions while endeavoring to produce innovative 

ultrahigh-speed high-capacity network technologies 
that will support future networks in 2020.
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