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1.   Introduction

With the explosive growth of the Internet, the 
amount of traffic has been increasing by a factor of 
1.5 every year [1]. To keep up with the continuous 
increase in traffic, NTT Laboratories has been striv-
ing to research and develop an ultrahigh-speed opti-
cal packet network (hereinafter, UOPN in this article) 
[2]. Our aim is to provide various services on it, such 
as a huge-bandwidth service (HBS), broadband 
packet service (BPS), and tiny-bandwidth mass ser-
vice (TMS) [3]. To provide these different types of 
services efficiently, we must configure various ser-
vice networks on the UOPN, including a huge-band-
width service network and a broadband packet net-
work (BPN) and an event processing network (EPN) 
to handle event information to support TMS. 

A BPN supports various packet services (both BPS 
and conventional IP services) as well as the EPN on 
top of it [4]. Therefore, it is necessary to construct 
multiple BPNs to support various types of services. 
The BPNs for these different services are multiplexed 
on the UOPN, as shown in Fig. 1. In the future, as 
technologies advance, more applications are expected 
to be developed. Some of them will become killer 

applications and we may face more drastic traffic 
increases than today, which will make it harder to 
predict traffic characteristics. Moreover, partially 
because they are likely to play a greater role in our 
daily lives, communication networks must be more 
resilient to disasters and failures.

Considering this background, NTT Laboratories 
has been researching and developing technologies 
that will enable the provision of BPNs that can handle 
traffic changes flexibly and will be highly resilient to 
failures and disasters. For these BPNs, network virtu-
alization and autonomic management and control are 
essential technologies. We explain these technologies 
in this article. We also discuss (1) methods of achiev-
ing IP services on BPNs, (2) the overlay network 
technique, which will stimulate the rapid growth of 
various new applications on BPNs, and (3) the trends 
in packet transport technology, which will provide 
carrier-grade BPNs.

2.   Network virtualization

In this article, we use the term network virtualiza-
tion for technology that provides various service 
networks by virtually dividing and combining the 
resources of the UOPN (Fig. 1). When BPNs are pro-
vided as a service network, the service network can 
be made more flexible and resilient by combining 
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network virtualization and autonomic management & 
control. 

BPNs are multiplexed on the UOPN. Layer 1 (L1) 
paths, which are provided by the UOPN, create links 
between routers, which are network nodes forming 
BPNs. The topology of the logical BPNs is config-
ured by combining L1 paths. It is called the virtual 
network topology (VNT) [5]. The VNT is computed 
to suit a given traffic volume on a service network and 
UOPN resources taking into consideration restric-
tions on network operating policies, such as desired 
reliability and quality (Fig. 2). 

Individual service networks can be designed easily 
by constructing BPNs to suit the quality and charac-
teristics of each service. The BPN’s physical resourc-
es (e.g., routers) can be virtually divided and inte-
grated and used to establish a BPN for an individual 
service. We call these routers logical routers. Router 
functions are segmented into components, and only 
necessary functions are provided to each BPN. This 
enables resources to be allocated flexibly.

Network virtualization makes it possible to provide 
just the required functions when they are necessary 
by modularizing the BPN router resources and the 
UOPN resources. For example, when the BPN of a 
certain service is configured, a suitable network 

topology is dynamically configured by considering 
the traffic volume and the desired delay levels and 
other attributes needed to provide that service. Thus, 
BPNs can be logically configured without any physi-
cal restrictions.

Network virtualization also makes it possible to 
access the resources of the UOPN, including wave-
length links that connect nodes of the optical trans-
port network, as multiple BPNs by dividing those 
resources in a virtual manner [6]. When the UOPN 
resources are divided into multiple BPNs, the conten-
tion between multiple BPNs is also adjusted. In this 
case, BPNs are configured by dividing UOPN 
resources according to the quality and characteristics 
of the services on each BPN.

3.   Autonomic management and control

Autonomic management and control is a technolo-
gy that manages dynamic network traffic changes 
that cannot be predicted at this moment and it 
strengthens network resiliency against failures and 
disasters. This technology upgrades the maintenance 
functions of a virtualized network through automatic 
failure recovery and congestion control. It enables the 
traffic volume on a virtualized network to be mea-
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sured automatically and resource utilization of the 
whole network to be optimized in real time. It also 
provides congestion control for responding to chang-
es in traffic automatically: the network traffic volume 
is automatically measured, and if the volume exceeds 
a threshold, a new link is dynamically set up to carry 
the traffic while the VNT is altered, if possible, to 
reduce the traffic volume carried by the congested 
link.

Although a route is automatically changed to a 
recovery route if a failure or disaster occurs, the VNT 
is changed automatically depending on how much the 
total network resources could be reduced by a failure 
or disaster, and the resources are reoptimized. The 
operator also can start VNT optimization manually 
when necessary.

The key points of autonomic management and con-
trol are to measure the traffic volume and optimize 
network resources considering the volume in real 
time. Since it is actually difficult to measure the traf-
fic volume of a large-scale network in real time, there 
is no alternative but to measure it under some restric-
tions. Thus, given that the traffic volume will be mea-
sured under some restrictions, the challenge is to 
predict the status of the whole network accurately 
enough that network resources can be optimized. For 

this purpose, the traffic volume of the whole network 
(i.e., traffic matrix) is estimated on the basis of infor-
mation about traffic on the links between routers, and 
resource optimization should then be conducted (Fig. 
3). 

In addition to detecting what is happening in the 
different parts of the network and performing auto-
nomic control, the system must also deliver the infor-
mation to the operators in a clear manner. Moreover, 
it is important to simulate what will happen after 
autonomic control is applied and to deliver the results 
to the operator before autonomic control is performed 
so that the operator can make the correct decisions. 
To deliver the network status to the operator clearly, 
it is effective to visualize the network traffic volume 
and route statuses as well as the network status after 
an event occurs. 

4.   IP services on BPNs

Existing IP services also need to be provided as a 
service network on the UOPN. One of the advantages 
of using BPNs on the UOPN to provide IP services is 
the availability of the cut-through technique. If the 
traffic on a BPN suddenly surges and a large amount 
of traffic flows between certain BPN end points, it is 
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Fig. 2.   Virtual network topology. 
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effective to set up a dedicated wavelength path that 
directly connects those end points via cut-throughs at 
intermediate routers. The VNT determines whether 
or not to dynamically configure a lightpath and to set 
cut-throughs by considering the traffic carried by the 
IP network. 

A technology that provides scalable and flexible IP 
services on BPNs is functionally distributed transport 
[7]. This can divide forwarding elements (FEs), 
which transfer packets, and service elements (SEs), 
which provide services with added value, from con-
trol elements (CEs), which provide route calculation. 
This division lets us enhance each element separately 
(Fig. 4). 

With functionally distributed transport, FEs, CEs, 
and SEs can be integrated effectively and nodes can 
be configured flexibly. Each node can also be pro-
vided to each service network after resources have 
been divided by considering each node as a logical 
router. The number of nodes in a BPN can be adjusted 
by setting nodes of different sizes. BPNs require 
route calculation that permits dynamic cut-through 
by lightpaths. Furthermore, they require route calcu-
lation on a network that supports a vast number of 
terminals including objects—a trend being driven by 

the development of ubiquitous services such as TMS. 
Here, configuring nodes of the right size in suitable 
numbers will be an effective way to reduce the calcu-
lation overhead.

To better support the current versions of high-layer 
protocols, such as TCP (transmission control proto-
col), a more-efficient upper-grade transfer function 
will also be needed. Even if a lightpath is set up in 
response to a traffic increase, the current version of 
TCP suffers from poor flow control. Thus, a TCP 
transfer control method suitable for optical high-
speed networks needs to be considered. Techniques 
such as updating TCP windows from the network side 
and controlling the timing of acknowledgments 
(ACKs) will be effective ways to achieve the target 
throughput (Fig. 5) [8]. Those functions specific to 
special services can be achieved as SE functions in 
functionally distributed transport. The SE function is 
also effective in designing the overlay network, 
which provides value-added services for each appli-
cation.

5.   Overlay network

If the functions offered by the BPNs, including 

Optimizes network resources
– Redesign of topology
– Change of routes

Traffic matrix

Node Traffic estimate value Link utilizatiion Simulates
– Understanding of traffic volume and
 route differences before and after an
 event occurs

Fig. 3.   Traffic matrix.
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quality of service (QoS), mobility, and security func-
tions, are utilized, then it is likely that killer commu-
nication services will emerge with the provision of 
many new applications having higher quality and 
security that are impossible to provide over the cur-
rent Internet. The overlay network (Fig. 6) is expected 
to foster the emergence of killer communication ser-
vices. Communication services are provided by 
applications implemented on the end hosts. The over-
lay network technique can flexibly set up communi-

cation paths between end hosts provided by BPNs, 
taking into account the state of the network as an 
upper layer of the transport network. The end hosts 
running applications organize overlay network topol-
ogies. For example, by using the quality-guaranteed 
communication paths provided by the BPNs, they can 
organize the overlay network and establish multicast 
delivery of high-quality images on it.

The overlay network can also be used to control 
network traffic. Network resources can be utilized 
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Fig. 5.   TCP throughput improvement by using ACK control.
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efficiently by considering changes in the network’s 
status and traffic. If either the BPNs or the UOPN, 
which is the lower-layer network, experiences a drop 
in quality and/or reliability, the overlay network can 
respond by changing individual topologies set 
between terminals or by rerouting traffic along better 
routes.

6.   Packet transport

In BPN configuration, the packet transport method 
is considered to be a new technology that can provide 
paths whose quality matches those of existing trans-

port networks. We call this new technology the new 
packet transport technology. Candidates for new 
packet transport technologies include PBB-TE (pro-
vider backbone bridge traffic engineering) [9] and 
MPLS-TP (multiprotocol label switching transport 
profile) [10]. This new packet transport technology is 
expected to simplify layers and network design (Fig. 7).

ATM (asynchronous transfer mode), MPLS, and IP 
networks were all designed to provide various ser-
vices on top of circuit-switching-based transport 
networks such as TDM (time division multiplexing) 
and OTN/WDM (optical transport network, wave-
length division multiplexing). However, the introduc-
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Fig. 6.   Overlay network.
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tion of the new packet transport technology enables 
fine-grained bandwidth paths to be set up on the 
transport network. Supporting various bandwidths 
and signal rates in one device may enable reductions 
in the numbers of devices and layer levels. Another 
feature of the new technology is that it supports 
packet services well as a result of its packet multi-
plexing. Moreover, because the transport network 
will, fundamentally, offer packet switching, it may be 
possible to reduce the number of core nodes in the 
service network. 

For the new packet transport technology, it will be 
important to achieve OAM (operation, administration 
and maintenance) functions, QoS functions, and scal-
ability in terms of the number of paths while taking 
advantage of the characteristics of the current packet 
switching. Another point is that packet protocols 
should be designed using a clean-slate approach con-
sidering that the network will act as a social infra-
structure [11]. It is important to provide sufficient 
space to permit protocol extensions in the future by 
designing them while bearing in mind aspects points 
such as QoS, mobility, and security.

7.   Concluding remarks

In this article, we explained network virtualization 
and autonomic management & control as basic tech-
nologies for providing various packet services effi-
ciently. We also discussed the trends in packet trans-
port technology, which will yield a carrier-grade 
broadband packet service, the overlay network tech-
nology, which allow new applications to emerge 
quickly on the broadband packet network (BPN), and 
methods of achieving IP services on BPNs. In addi-
tion, we introduced technology components. Some of 
these still have issues that need to be resolved before 
we can make the future network. We will continue 
our research and development activities in order to 
find detailed solutions. 
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