
� NTT Technical Review

1. Effectiveness of automating testing

Automated software testing can generally reduce
the amount of testing work, and it can also help main-
tain a fixed level of software quality. However, in
some cases, the cost of creating and maintaining the
automatic test code can be high, so the desired effect
is not achieved, even if all test items are automated.
Consequently, it is important to take a strategic
approach to test automation [1], [2].

2. NICE-ELWISE architecture

NTT Laboratories has developed an information
distribution platform based on IC (integrated circuit)
cards called NICE (network-based IC card environ-
ment) [3] and an extremely multipurpose IC card
conforming to ISO 14443 Type B standards, called
ELWISE [4], and has been promoting business based
on these products [5]. The architecture of NICE-
ELWISE is shown in Fig. 1. The NICE-ELWISE
software can be broadly divided into the NICE web-
server-based operations and management system and
the IC card embedded software, including the JIC-

SAP2 infrastructure, the card manager, and various
libraries for functions such as encryption (JICSAP:
Japan IC Card System Application Council).

3. NICE-ELWISE testing

3.1 Testing overview
At NTT Laboratories, whenever a product is passed

from the developers to the shipping stage for version
upgrades or bug fixes, or when there is a change to its
external environment such as a security patch to the
operating system or middleware used by the product,
the product’s individual functions as well as its over-
all quality are tested before it is delivered to busi-
nesses to ensure that no problems will result. Test
items include operational tests done by the shipping
personnel and items that provide an overall assess-
ment, including items from test documents created by
the developers. The latter include tests of functions
that are used infrequently, such as when the batteries
expire or there is a memory fault in the card.

3.2 Test features
The features of the NICE-ELWISE tests are listed

in Table 1. Integration testing for web software is in
the form of user operations from the application
screen and entails frequent patches of the operating
system and middleware as well as many structural

Improvements to NICE-ELWISE
Test Efficiency
Noriko Fukuda, Kenji Murai†, Hideki Kawabe,
and Katsuaki Miyabo

Abstract
We have developed an automatic testing tool that can increase the efficiency of testing work for NICE-

ELWISE, which is an information distribution platform based on IC (integrated circuit) cards composed
of two completely different types of software: a web-server-based operations and management system
called NICE and embedded software for ELWISE cards. We investigated the features of both types of
software and determined which tests are suitable for automation. This article describes our investigation
and presents evaluation results.

Letters

†	 NTT Service Integration Laboratories
	 Musashino-shi, 180-8585 Japan

Letters

Vol. 7 No. 6 June 2009 �

variations. For embedded software, input/output
interface tests are used and updates to IC chips or
card firmware (APE: application execution environ-
ment) are infrequent, but tests for compatibility with
reader/writer equipment are necessary.

3.3 Testing issues
Since there are many products and versions, the

cost of compatibility testing is very high and requires
knowledge of the implementation and overall know-
how about each product. The fact that it is difficult for

someone unfamiliar with a product to perform the
tests has been an issue in efforts to complete the test-
ing work. For these reasons, we studied ways in
which overall product quality testing can be done in a
short amount of time to a consistent level by persons
that have not had the opportunity to accumulate
detailed implementation knowledge.

4. Testing suited to automation

In general, tests that are suited to automation are

NICE
OpS

NICE
core

Middle-
ware

OS

NICE
server

OpS: operations system
OS: operating system
VM: virtual machine
AP: application

IC card Card tool terminal

Web software

Embedded software

Tools

NICE
client

OS OS

C
ar

d
m

an
ag

er

Chip (hardware)

Common libraries

Various encryption libraries

JICSAP2 etc.

APE (firmware)

N
IC

E
 te

rm
in

al
 a

pp
lic

at
io

n

Application ...

...

Java AP

Java
VM

Card
test
tools
etc.

Other
tools

Other
applica-

tions

A
pp

lic
at

io
n

Fig. 1. NICE-ELWISE architecture diagram.

Table 1. NICE-ELWISE test features.

Type

Product

Integration test format

Configuration variations

External environment

Web software

NICE etc.

User operation tests from the GUI

Multiple

(OS, middleware)
Patches are frequent. Product life
averages approx. three years.

Embedded software

JICSAP2 infrastructure
Card manager
Various libraries etc.

Input/output interface tests

Specific

(chip, APE)
Changes are infrequent. Life averages ten
years or more (reader/writer).
Compatibility testing is required.

Letters

� NTT Technical Review

ones for which little work to update the test automa-
tion code is required. Examples of suitable tests
include tests of functions for which changes to the
application programming interface are infrequent,
tests where the code is used many times, such as load
testing, or simple test scenarios where the code can be
created easily. In contrast, tests that are not well
suited to automation include tests for functions that
are changed frequently, such as the graphical user
interface (GUI), regression testing that requires
changes or additions to the test code, testing of con-
figuration variations such as environment settings,
and tests where the results from various input values
must be checked.

5. Application of automation

Because research and development of the basic func-
tions of NICE-ELWISE was complete, no further sig-

nificant expansion in functionality was expected, busi-
ness deployment was proceeding, and usage patterns
had become well-known, we decided that it had become
easier to automate many tests that had previously been
done manually by shipping personnel. For example,
GUI testing is generally not considered suitable for
automation because of the frequent changes, but no fur-
ther significant changes were expected to the GUI for
NICE. Furthermore, while configuration variation tests
in multiple environments are not usually suitable for
automation, the conditions for embedded systems are
fixed; in particular, those for NICE are fixed. Finally,
periodic checks related to security patches are also
required, so test code for this purpose can be used many
times over. For these reasons, we decided that the soft-
ware was suitable for test automation.

CM

CLs

CM
Test

application

NICE

CLs

JICSAP2 infrastructure

Various libraries

APE

Chip

APE

Chip

R/W driver

R/W driver

OS

Middleware

IC card

R/W driver
interface

R/W driver
interface

APE/interface

(a) Configuration 1 (testing linkage and operation of IC card internal software)

(b) Configuration 2 (testing functions linking the server, terminal, and IC card)

APE/interface

R/W

R/W

Terminal

IC card

CM: card manager
CLs: common libraries
R/W: reader/writer

Terminal/server

Product under test

Test tool

Test tool

Test tool

Fig. 2. Test organization.

Letters

Vol. 7 No. 6 June 2009 �

6. Clarification of test viewpoints

To ensure uniformity in the level of test work, we first
established clear test viewpoints to be used by the ship-
ping personnel.

(1)	� To check the functionality at the individual prod-
uct level, we took the user viewpoint and per-
formed system operations correctly under normal
conditions and in normal environments.

(2)	� To check the overall product quality, it is neces-
sary to perform checks at all levels, from the upper
application level to the lower libraries, ensuring
that they are operating together correctly.

7. Test organization

By using the test viewpoints instead of testing the
products individually, we studied ways of testing that
encompass test items from the upper application levels
all the way down to lower-level libraries. For example,
we selected upper application-level commands that
could operate all normally used functions by studying
all of the interfaces between each product and between
the products and hardware in detail. In this way, the tests
to be performed by the shipping personnel could be

designed to cover about 70% of the NICE test items,
85% of the JICSAP2 infrastructure items, and 90% of
the library items relative to the entire test item set. As
shown in Fig. 2, the test organization comprises two
configurations: configuration 1 tests operation of func-
tions linking internal IC card software and configuration
2 tests functions linking the server, terminal, and IC
card.

8. Evaluation of test optimizations

We studied automation suitability and established
clear test viewpoints as described above and then devel-
oped test automation tools.

(1)	 Efficiency of configuration 1
We evaluated the efficiency of configuration 1 by

measuring the time taken to perform the tests manually
and by using the test tools. Automation reduced the test-
ing time by 98%, and testing for each version could be
accomplished in approximately 30 minutes.

(2)	 Efficiency of configuration 2
For configuration 2, we not only examined the

increase in efficiency after test tool introduction, but also
considered that a person with limited NICE testing
experience could now perform the tests to the same level

1

0.8

0.6

W
or

ki
ng

 ti
m

e

0.4

0.2

0

Before
introducing
automation

After
introducing
automation
(1st day)

After
introducing
automation
(2nd day)

After
mastery
(estimated)

Developer
(for reference)

Tests requiring five or more steps

Tests requiring fewer than five steps

65% less
71% less
(estimate) 69% less

48% less

Fig. 3. Time required for inexperienced personnel to perform NICE test operations.

Letters

� NTT Technical Review

as a NICE developer. The testing time required by an
inexperienced NICE tester is shown in Fig. 3. For test
procedures using the test tool and requiring fewer than
five operations, a significant reduction in test times was
seen after the first attempt. Since tool operation is very
simple, no further effect was observed from the second
attempt onwards, regardless of the tester’s experience
level.

For test items requiring five or more procedural steps,
such as those requiring preparation before running the
test tool, additional time was required for inexperienced
testers on the initial attempt, but from the second
attempt, once they had completed the entire test once
and understood the procedure, a significant reduction in
required time was observed because test settings and
conditions were fixed.

By performing the tests many times and mastering the
procedures, inexperienced testers could perform them to
the same level as a developer (shown for reference), so
a time saving of about 71% can be expected.

The results shown that tests can now be performed to
the same level as an experienced tester, even when test
personnel change, once the new personnel have mas-
tered the test operations.

9. Future developments

By studying the suitability of automatic testing taking

into consideration the particular characteristics of the
software, we can learn how various approaches—such
as building product linkage test environments that clari-
fy a product’s interfaces down to the hardware level and
maintaining the quality and level of testing by establish-
ing environmental conditions from the user viewpoint—
can be applied to general software development. We are
advancing the application of these methods as one way
to increase software development productivity in the
future.

References

[1]	 J. Takahashi and Y. Kakuda, “Effective Automated Testing for Graph-
ical Objects,” Transactions of Information Processing Society of
Japan, Vol. 44, No. 7, pp. 1695–1708, 2003.

[2]	 R. D. Craig and S. P. Jaskiel, “Systematic Software Testing,” Artech
House Publishers, 2002.

[3]	 R. Toji, Y. Wada, S. Hirata, and K. Suzuki, “NICE––A Network-based
Platform for Multi-application Smart Cards,” NTT REVIEW, Vol. 14,
No. 1, pp. 13–19, 2002.

[4]	 M. Yoshizawa, H. Unno, T. Fukunaga, and H. Ban, “ELWISE––A
Super Multi-purpose Smart Card,” NTT REVIEW, Vol. 14, No. 1, pp.
23–27, 2002.

[5]	 S. Ijuin, T. Yamamoto, S. Hirata, K. Suzuki, Y. Wada, T. Kashiwagi,
and N. Kaku, “Development of a NICE-based Smart Card System
Conforming to the GlobalPlatform Specifications,” NTT Technical
Review, Vol. 2, No. 4, pp. 66–69, 2004.

	 https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr2004
04066.pdf

Noriko Fukuda
Member, Smartcard Service Promotion Proj-

ect, NTT Service Integration Laboratories.
She received the B.E. degree in information

engineering from Muroran Institute of Technol-
ogy, Hokkaido, in 1995. She joined NTT in 1995
and is currently engaged in the development of
an ID management platform.

Kenji Murai
Member, Smartcard Service Promotion Proj-

ect, NTT Service Integration Laboratories.
He received the B.A. degree from the Faculty

of Environmental Information, Keio University,
Kanagawa, in 1995. He joined NTT in 1995 and
is currently engaged in the development of an ID
management platform.

Hideki Kawabe
Senior Research Engineer, Smart Card Service

Promotion Project, NTT Service Integration
Laboratories.

He received the B.S. degree in mathematics
from Waseda University, Tokyo, in 1986. He
joined NTT Communications and Information
Processing Laboratories in 1986.

Katsuaki Miyabo
Senior Research Engineer, Smart Card Service

Promotion Project, NTT Service Integration
Laboratories.

He received the B.E. and M.E. degrees in elec-
trical engineering from Kanazawa University,
Ishikawa, in 1980 and 1982, respectively. He
joined the Electrical Communication Laborato-
ries, Nippon Telegraph and Telephone Public
Corporation (now NTT) in 1982. He is currently
engaged in the development of an ID manage-
ment platform.

