
� NTT Technical Review

1.   Introduction

With the widespread use of the Internet, the number 
of security problems has also increased. Cyber crime 
such as identity theft has dramatically increased in 
recent years. Most of the security problems are 
caused by malware, which is programmed and used 
by attackers. By operating malware on users’ per-
sonal computers and servers, attackers can control 
those personal computers and servers illegally as bots 
(programs designed to automate tasks) to engage in 
other cyber attacks.

Malware infection activities take advantage of vul-
nerabilities not only in the Windows operating system 
(OS) but also in web applications on servers and in 
web browsers on personal computers. Such activities 
are become increasingly complex so it is difficult to 
detect them and identify infection routes. Further-
more, the variations of malware are increasing rap-
idly, making malware analysis all the more difficult. 
For example, a downloader (one type of malware) 
does not infect a victim directly but causes the victim 
to download other malware programs that do cause 
infection.

At NTT Information Sharing Platform Laborato-
ries, we are researching and developing technologies 
for detecting malware infection activities, collecting 

malware, analyzing infection routes, and analyzing 
malware itself. These technologies let us identify 
malware infection characteristics accurately and effi-
ciently. Consequently, a safe and secure network will 
be achieved by filtering malware.

2.   Overview of anti-malware technologies

The anti-malware technologies that we have devel-
oped are divided into three main categories, as shown 
in Fig. 1. First, we introduce technologies for detect-
ing malware infections and collecting malware; then, 
we explain malware analysis technologies.

2.1   �Malware infection detection and malware col-
lection

These technologies are used to receive attacks and 
collect malware through the use of decoy systems 
called honeypots. They are also used to analyze com-
munications with honeypots and identify information 
that can be useful in defending against malware 
infections.

Honeypots can generally be classified into low-
interaction and high-interaction types. Low-interac-
tion honeypots are designed to emulate vulnerable 
systems in order to attract malware. They can collect 
attack information safely because their systems do 
not execute the malware. However, the attack infor-
mation acquired is limited because attackers cannot 
compromise such systems as they are just interacting 

Special Feature: Trend of Network Security Technologies

†	 NTT Information Sharing Platform Laboratories
	 Musashino-shi, 180-8585 Japan

Anti-Malware Technologies
Mitsutaka Itoh†, Takeo Hariu, Naoto Tanimoto, 
Makoto Iwamura, Takeshi Yagi, Yuhei Kawakoya, 
Kazufumi Aoki, Mitsuaki Akiyama, and Shinta Nakayama

Abstract
This article introduces anti-malware technologies currently being researched and developed at NTT. 

Malware is used by cyber attackers to abuse users’ personal computers and servers, such as using them 
as bots, which exposes computer networks to security threats. Our anti-malware technologies can detect 
malware infection activities, collect malware, analyze infection routes, and analyze the malware itself. 
They will lead to a safe and secure network in which malware is filtered out.



Vol. 8 No. 7 July 2010 �

Special Feature

with a simulation. On the other hand, high-interaction 
honeypots are composed of real vulnerable systems, 
which can actually be attacked through these vulner-
abilities, with embedded surveillance functions. 
High-interaction honeypots are difficult to manage 
because their systems temporarily execute the attack-
ing code, but they can collect much more attack infor-
mation than low-interaction honeypots. Although the 
risk of high-interaction honeypots being infected 
with malware is said to be a problem, we have suc-
ceeded in developing secure high-interaction honey-
pots. We are researching and developing three kinds 
of honeypots for different types of major malware-
infection activities. The first type can detect activities 
that exploit the vulnerability of the Windows OS. The 
second type (web server honeypot) can detect activi-
ties that exploit vulnerabilities in web applications. 
The third type (web client honeypot) can detect 
activities that exploit vulnerabilities in web brows-
ers.

2.2   Malware analysis
These technologies analyze malware collected by 

honeypots and analyze its functions in detail to clari-
fy potential threats. Malware analysis consists of 
dynamic and static types: dynamic analysis actually 
runs malware to analyze its behavior while static 
analysis analyzes the malware program code.

Malware dynamic analysis can be classified into 
closed- and open-environment types: closed-environ-
ment analysis runs malware in an environment com-
pletely isolated from the Internet while open-environ-
ment analysis runs it in one connected to the Internet. 
In both environment types, a debugger is useful for 
monitoring the behavior of malware in detail. The 
communication patterns of malware obtained by 
dynamic analysis can be used to determine whether 
there are any users’ personal computers or servers 
infected by malware.

Malware static analysis uses disassembly tech-
niques and other means to clarify all of the functions 
possessed by a certain piece of malware. To make this 
process efficient, malware is classified into groups 

Server-type
honeypot

Client-type
honeypot

Dynamic
analysis

Static analysis

Web Phantom
(honeypot for attacks
via web applications)

MARIONETTE
(honeypot for attacks
via web browsers)

Honeypot for attacks
via OS (Windows)

Botnet Watcher
(open-environment
type)

Stealth Debugger
(behavior analysis)

Malware classification
technology 

Disassembly
techniques

Closed-environment
type

Malware infection detection and malware collection Malware analysis

- Link to
  existing anti-
  malware
  equipment 
- Interface
  design
- Etc.

Countermeasures

Malicious
websites

Malicious
websites

Bot

Bot

Internet

Distribute/infect

Get instructions

Get

Infect

Distribute/infect

Access

Via browser

Via web
application

Via OS

Server-type honeypot

Client-type honeypot
Collect

Analyze
trends

by
infection
routes
and

vulnera-
bilities

Dynamic analysis Behavior
analysis

Virtual
Internet

Static analysis

ClassifyClassify

Disassemble

Create malicious
URL list

Create list of
malicious
communication
patterns 

Warn owners of
hosts used as bots

Detection/collection Analysis Countermeasures

Get communication pattern

Fig. 1.   Overview of anti-malware technologies.



� NTT Technical Review

Special Feature

based on program similarities, and only malware rep-
resentative of each group is analyzed.

3.   Honeypots

3.1   Web server honeypot
With the increasing popularity of weblogs (blogs) 

and online shopping, many web applications provide 
a platform for social services. The increase in the 
number of web applications has made it easy for 
attackers to hack websites by using exploit code tar-
geting the vulnerabilities of those web applications. 
For example, attackers can illegally obtain and con-
trol information stored on websites. Furthermore, 
they can even infect websites with malware. To 
defend against such attacks, web application firewalls 
and log monitors are deployed. However, to prevent 
false-negative and false-positive detections, it is nec-
essary to customize the settings according to the 
configuration of each website. To solve this problem, 
we are researching and developing a high-interaction 
web honeypot called Web Phantom, which collects 
attacks on websites from the Internet and automati-
cally identifies information that can be used to detect 
and filter website attacks.

The structure of Web Phantom makes it easy to 
install vulnerable web applications by using normal 
procedures. It also ensures safety with respect to the 
risk of malware infection by monitoring the execu-
tion of attack code. When the system detects the end 
of the execution, it returns to the state it was in prior 
to accepting the attack code. This function enables 
the Web Phantom to collect information about 

sequences of attack operations caused by attack code, 
such as malware downloaded from the Internet, 
safely and automatically. In addition, the system rec-
reates attacks in a closed environment by using the 
collected information in order to precisely identify 
communications that cause an illegal state such as 
information falsification or malware infection. For 
example, when the system detects a malware infec-
tion, the exploited web application vulnerability can 
be identified and the URL (uniform resource locator) 
of the malware download site on which the attacker 
placed the malware, can be determined. Moreover, a 
centralized monitoring system that can collect infor-
mation from many Web Phantoms has been con-
structed (Fig. 2). Using this monitoring system, we 
can gather a significant amount of useful information 
efficiently. By deploying this system, we can discover 
new vulnerabilities in web applications. Moreover, 
user websites are protected from malware infection 
by filtering communications from the websites to 
malware download sites. 

3.2   Web client honeypot
Nowadays, the number of web-browser-targeting 

attacks that lead users to adversaries’ websites and 
exploit web browser vulnerabilities is increasing. To 
comprehend the exploitation techniques and provide 
effective countermeasures, we have designed and 
implemented a high-interaction client honeypot, 
called MARIONETTE, that detects web browser 
exploitation in accurate detail.

The key features of MARIONETTE are stepwise 
detection focusing on exploitation phases, multiple 

Realtime Past data Yr Mo Day Yr— Mo Day

Statistical data
Honeypots

Date/time: 2009.2.28 12:43 [attack: malware infection]
Attack source: yyy.com(192.168.0.3)@IT (IP:192.168.0.3)
Malware download site: zzz.ru@RU (10.0.0.2)
Attack code:  http://xxx.com/cms.php?dir=http://zzz.ru/1.txt

Attack observation using server-type honeypots 

xxx.netxxx.com xxx.jp

Detailed information

Fig. 2.   Screenshot of malware infection activities monitored by Web Phantoms.



Vol. 8 No. 7 July 2010 �

Special Feature

crawlers, malware infection prevention, and malware 
distribution network tracking. HoneyPatch, which is 
one of the detection methods, monitors the dataflow 
of certain vulnerable functions in web browsers and 
decides whether a vulnerable point is being attacked. 
Process Sandbox also detects malicious behavior and 
prevents infection in order to maintain continuous 
system operation. In addition, by running multiple 
crawler processes, MARIONETTE can discover 
malicious sites in a huge web space.

In most situations, an adversary takes the form of a 
redirection network of malicious sites (i.e., exploit, 
hopping, and malware distribution sites). An exploit 
site does the actual exploitation of a target web 
browser and forces it to download executable mal-
ware from a malware distribution site. A hopping site 
redirects a target to the next hopping or exploit site. 
Adversaries lure web clients to exploit websites by 
using compromised websites that have been injected 
with malicious redirection code. Once web clients 
access these compromised websites, they are auto-
matically redirected to the next hopping or exploit 
site. We call the redirection network formed by these 
sites a malware distribution network. MARIONETTE 
has a function for extracting the structure of malware 
distribution networks. 

Our lengthy investigation reveals the nature of a 
malware distribution network, which has a vast num-
ber of hopping sites embedded in the redirection code 
toward a specific exploit site (Fig. 3). The informa-
tion obtained by MARIONETTE can be used to pro-
vide countermeasures appropriate to the situation. 

For example, the owner of a tampered hopping site 
can be notified of requesting to correct the tampered 
web content and we can filter the accesses to an 
exploit site embedded in exploit code.

4.   Malware analysis technologies

4.1   Dynamic analysis
The dynamic analysis of malware can take place in 

two types of execution environment: an environment 
that is isolated from the Internet or one that is not. 
Since some existing malware requires access to the 
Internet (e.g., bots and downloaders), dynamic analy-
sis in an isolated environment cannot obtain a full set 
of results. However, executing malware in a non-iso-
lated environment is difficult because there are some 
concerns about how to control the activities of mal-
ware that has access to the Internet.

In addition, malware analysts always use a debug-
ger to obtain detailed analysis results of malware, but 
some sophisticated malware can detect debugger 
activities and stop its own execution. So if we want to 
analyze malware using a debugger, we must hide the 
debugger’s activities.

In order to analyze malware safely, we have con-
structed Botnet Watcher, which executes malware in 
a non-isolated environment. We have also constructed 
Stealth Debugger, which implements debugging 
mechanisms in a virtual machine monitor (VMM) 
layer.

When malware tries to connect to the Internet, Bot-
net Watcher terminates the connection and inspects 

IFRAME

Enlarged view Link structure

Existing
attack 
code

: URL

FRAME

META-refresh

Other

Fig. 3.   Visualization of malware distribution network targeting web browsers.



� NTT Technical Review

Special Feature

the payload. If the inspection reveals communication 
between the bot and a command and control (C&C) 
server or the downloading of other malware, Botnet 
Watcher transfers these communications to the Inter-
net. However, if the malware begins to send mali-
cious payloads (e.g., DDoS attacks or spam email), 
these are sent to a virtual Internet, which creates 
pseudo-responses to the malware. In this way, Botnet 
Watcher can safely obtain the features of the com-
munication patterns between the malware and other 
hosts (Fig. 4).

Stealth Debugger, which is implemented as a 
debugging mechanism in the VMM layer, provides a 
debugging function from another layer of the mal-
ware execution environment. Because ordinary 
debuggers make use of CPU (central processing unit) 
or OS debug-support mechanisms, some kinds of 
malware can easily detect the operation of a debug-
ger. In contrast, Stealth Debugger provides the 
debugging function from the VMM layer indepen-
dently of the original debug-support mechanisms, so 
malware cannot detect any debugger activities. Thus, 
Stealth Debugger can get effective malware analysis 
results by means of some anti-analysis techniques 
and can elucidate malware functions quickly.

4.2   Static analysis
The number of malware programs has been steadily 

increasing in recent years, and while it would be 
unrealistic to come up with a countermeasure for 
each and every one, determining a priority for creat-

ing countermeasures is proving to be difficult. Under 
these circumstances, we have been researching mal-
ware static analysis technologies centered on the clas-
sification of malware with the aim of clarifying the 
overall content of malware. Our malware classifica-
tion technology calculates the similarity between 
malware programs by examining the behavior of mal-
ware rather than its program code. This approach 
enables malware programs to be classified according 
to their potential functions such as ones that are not 
executed without a command from the attacker. How-
ever, much of the recent malware conceals the origi-
nal program code through the use of an obfuscation 
tool. It is also hard to obtain information about mal-
ware symbols, which makes it difficult to disassemble 
binary streams mixed with machine-language instruc-
tions and data. In response to these problems, we 
have developed three malware analysis techniques 
and constructed a malware classification system by 
combining them. These are (1) an unpacking tech-
nique that extracts dynamically generated code, (2) a 
technique that computes the most likely disassembly 
result based on a probabilistic model, and (3) a tech-
nique that efficiently computes the longest common 
subsequence of machine-language instruction 
sequences. The results of clustering 3232 samples of 
malware that we collected using this system are 
shown in Fig. 5. The names of these 3232 samples are 
lined up along the periphery of the circle. Samples 
connected by arcs with large radii exhibit high simi-
larity while those connected with arcs near the center 

Malware execution
environment

Destination host 
(blue: IRC, red: HTTP)

Communications 
(blue: IRC, red: HTTP)

HTTP: hypertext transfer protocol
IRC: Internet relay chat

Elapsed
time

Fig. 4.   Visualization of malware activities on the Internet. 



Vol. 8 No. 7 July 2010 �

Special Feature

of the circle exhibit low similarity. As a result of this 
classification, we found that about 50% of all samples 
were made up of Downadup malware, about 25% of 
Rahack malware, and about 20% of IRCBot malware 
(IRC: Internet relay chat). These results show that, for 
the malware samples targeted by this classification, 
most malware functions could be determined by ana-
lyzing representative samples of only a few types 
without having to analyze all samples.

5.   Conclusion

Anti-malware technologies that we have developed 
can identify malicious URLs, which should not be 
accessed from personal computers and servers, in a 
form that can be input to existing filtering equipment. 
Furthermore, they can also identify infected user 
equipment with high accuracy based on the features 
of malware communications and functions. In the 
near future, we plan to evaluate these technologies by 
performing tests with prototype systems.

IRCBotRahackDownadup

Fig. 5.   Results of classifying 3232 malware samples.



� NTT Technical Review

Special Feature

Mitsutaka Itoh
Senior Research Engineer, Supervisor, Secure 

Communication Project, NTT Information Shar-
ing Platform Laboratories.

He received the B.S. and M.S. degrees in math-
ematics from Waseda University, Tokyo, in 1984. 
He joined NTT Laboratories in 1984. Since then, 
he has been engaged in network security R&D. 
He created NTT-CERT and has contributed to 
improvements in information-system security. 
His current research interests are VoIP security, 
mobile cloud computing, web security, and coun-
termeasures against botnets. He is a member of 
the Institute of Electronics, Information and 
Communication Engineers (IEICE) of Japan and 
the Information Processing Society of Japan.

Takeo Hariu
Senior Research Engineer, Supervisor, Secure 

Communication Project, NTT Information Shar-
ing Platform Laboratories. 

He received the M.S. degree in electro-com-
munications from the University of Electro-
Communications, Tokyo, in 1991. Since joining 
NTT in 1991, he has been engaged in network 
security R&D. He is a member of IEICE.

Naoto Tanimoto
Research Engineer, Secure Communication 

Project, NTT Information Sharing Platform 
Laboratories.

He received the B.E. degree in engineering 
from the University of Electro-Communications, 
Tokyo, in 1989. Since joining NTT in 1989, he 
has been engaged in operating systems R&D. 

Makoto Iwamura
Research Engineer, Secure Communication 

Project, NTT Information Sharing Platform 
Laboratories.

He received the M.E. degree in science and 
engineering from Waseda University, Tokyo, in 
2002. He joined NTT in 2002. He is currently 
working toward the D.E. degree at the Graduate 
School of Fundamental Science and Engineer-
ing, Waseda University. His research interests 
include reverse engineering, vulnerability find-
ings, and malware analysis.

Takeshi Yagi
Secure Communication Project, NTT Informa-

tion Sharing Platform Laboratories. 
He received the B.E. degree in electrical and 

electronic engineering and the M.E. degree in 
science and technology from Chiba University in 
2000 and 2002, respectively. Since joining NTT 
in 2002, he has been engaged in network archi-
tecture R&D. His current research interests 
include network security. He is a member of 
IEICE and the Institute of Electrical Engineers of 
Japan.

Yuhei Kawakoya
Secure Communication Project, NTT Informa-

tion Sharing Platform Laboratories.
He received the M.E. degree in science and 

engineering from Waseda University, Tokyo, in 
2002. Since joining NTT in 2005, he has been 
engaged in network security R&D.

Kazuhumi Aoki
Secure Communication Project, NTT Informa-

tion Sharing Platform Laboratories.
He received the M.S. degree in information 

science from Tohoku University, Miyagi, in 
2006. Since joining NTT in 2006, he has been 
engaged in network security R&D.

Mitsuaki Akiyama
Secure Communication Project, NTT Informa-

tion Sharing Platform Laboratories.
He received the M.E. degree in information 

science from Nara Institute of Science and Tech-
nology in 2007. Since joining NTT in 2007, he 
has been engaged in network security R&D.

Shinta Nakayama
Secure Communication Project, NTT Informa-

tion Sharing Platform Laboratories.
He received the M.S. degree in engineering 

from the University of Electro-Communications, 
Tokyo, in 2009. Since joining NTT in 2009, he 
has been engaged in network security R&D.


