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1.   Introduction

Microelectromechanical systems (MEMS) and 
nanoelectromechanical systems (NEMS) are expect-
ed to provide “More than Moore’s Law” devices for 
future electronics. In MEMS/NEMS, resonant struc-
tures are key components for ultralow-mass sensing 
and single-charge detection [�]–[3]. Optical interfer-
ometry and optical deflection techniques, which use 
laser beams, are standard methods for detecting 
dynamic mechanical motion with nanometer-order 
amplitude [4]. However, the spatial resolution of 
these methods is limited by the diffraction limit of the 
optical systems. To realize the full potential of 
MEMS/NEMS, we need to develop a new method for 
detecting nanometer-order amplitudes with high-spa-
tial resolution. Vibration detection using the micro-
probe of a scanning probe microscope (SPM) is a 
promising method for detecting nanovibrations with 
nanometer-order resolution [5]–[�0]. Since the effec-

tive contact force in an SPM’s dynamic force mode is 
small enough compared with the vibration energy of 
MEMS/NEMS, the resonator’s vibration envelope 
can be imaged with high-spatial resolution. Vibration 
detection in various microresonators and nanoresona-
tors, such as single-crystal silicon cantilever devices 
[5], carbon nanotube beams [6], [7], and graphene 
membranes [8] has been demonstrated using the 
SPM-based technique. 

The key to improving the SPM-based method is a 
simple actuation method for microresonators and 
nanoresonators. In previous studies [5]–[8], addi-
tional structures or devices were required to actuate 
the resonators. One of the most effective and easiest 
ways to actuate them is to use a piezoelectric actuator 
[5]. However, the cut-off frequency of the piezo-
device is limited by its macroscopic size, so it is not 
suitable for nanomechanical resonators. Another way 
is to drive the actuation by the Coulomb force from 
additional electrodes [6], [7]. However, this method 
requires complex fabrication processes for the  
additional electrodes, so it is very difficult to put the 
electrodes near the target structures. To overcome 
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these problems, we tried to get the SPM microprobe 
itself to play the role of the actuator in order to eliminate 
the additional actuating devices. The probe actuates 
the membrane resonator directly, and nanometer-
order amplitudes at megahertz-order frequencies can 
be detected simultaneously [�0].

2.   Simultaneous excitation and detection of  
resonator vibration

In our method, the vibration of the membrane struc-
ture is excited by the voltage applied from the con-
ductive probe of the SPM system, as schematically 
shown in Fig. 1. The minimum distance between the 
probe and membrane is almost zero because the 
probe is controlled in the dynamic force mode. Since 
the Coulomb force strongly depends on the distance, 
a smaller SPM probe amplitude is preferable for 
actuation. The typical amplitude in our experiment 
was about 20 nm. Because the effective probe force is 
very small, the vibration of the membrane is not 
affected by observation using the SPM probe. The 
minimum detectable vibration amplitude of the mem-
brane is about � nm.

The experimental setup of our measurement system 
is shown in Fig. 2. The sample was simply set in the 
vacuum chamber of the SPM system (E-sweep from 
SII-NT). A probe coated with metal (Rh) having a 
spring constant of 53 N/m was connected to the func-
tion generator supplying actuation voltage (Vact) at a 
modulated frequency. The height information was 
monitored by the SPM controller (Nanonavi from 
SII-NT). Since the feedback speed of the SPM con-
troller is very low compared with the vibration of the 

membrane, we could observe the envelope of the 
membrane motion. The typical tip radius of the 
metal-coated probe was about 30 nm, which is suit-
able for high-spatial resolution observation of a 
vibrating membrane. All the experiments discussed 
in this paper were done in vacuum at room tempera-
ture.

3.   Fabrication process of membrane resonator

A 200-nm-thick single-crystal non-doped GaAs 
epitaxial layer grown on a �-µm-thick Al0.65Ga0.35As 
layer was used as the membrane resonator in our 
experiments (Fig. 3(a)). A small through-hole was 
fabricated in the top GaAs layer by optical lithogra-
phy with dry etching or focused ion beam (FIB) direct 
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etching (Fig. 3(b)). The Al0.65Ga0.35As layer was sac-
rificially etched using diluted HF solution (Fig. 3(c)). 
Circular membranes with a diameter ranging from 
about �0 to �00 µm were obtained by this simple fab-
rication method. 

Micrographs of the fabricated membranes are 
shown in Fig. 4. The membrane with a 65-µm-diam-
eter (a) was fabricated by conventional optical lithog-
raphy. FIB nano-lithography could fabricate smaller 
membranes. The 26-µm-diameter membrane with a 
through-hole with a diameter of about �00 nm was 
fabricated by FIB etching (b).

4.   Experimental results and discussion

4.1   Vibration analyses
Vibration analyses were performed near the center 

of the GaAs membrane resonator. The vibration char-
acteristics of the membrane resonators are shown in 
Fig. 5. The frequency of the actuation voltage Vact 

was swept as a function of time, while the vibration 
amplitude in the z-direction was monitored as height 
information by the SPM system. Figure 4(a) shows 
the fundamental mode of the 65-µm-diameter mem-
brane resonator, whose measured resonant frequency 
was 664.9 kHz and Q factor was 3034. The funda-
mental mode of the 26-µm-diameter membrane is 
presented in Fig. 5(b): the resonant frequency was 
2.62 MHz and the Q factor was 295�. The actuation 
voltage in Fig. 5(a) was 60 mV while that in Fig. 5(b) 
was 300 mV. Thus, we could successfully detect and 
actuate vibration of the resonator using the SPM 
probe.

Figure 6(a) shows the relationship between the 
resonant amplitude and actuation voltage of the 65-
µm-diameter resonator shown in Fig. 4(a). The reso-
nant amplitude increased linearly with increasing 
actuation voltage. Figure 6(b) shows plots of reso-
nant frequencies versus membrane resonator diame-
ter measured by the SPM method (diamonds) and 
laser interferometry (squares). The SPM-measured 
frequencies were almost the same as the interferom-
etry-measured ones. The GaAs membrane resonators 
vibrated at the same frequency as that of the actuation 
voltage. These results for amplitude and frequency 
suggest that the Coulomb force between the metal 
probe and the semiconductor membrane plays an 
important role in exciting the vibration. 

If a membrane is metal, then the exciting force gen-
erated by applying voltage Vact is the electrostatic 
force Fel , where Fel and Vact are linked by the relation 
Fel ∝ Vact

2 [��]. If the mechanical quality factor Q is 
constant, the resonant amplitude Amax is proportional 
to Fel. Consequently, in the electrostatic force model 
for the metal membrane, Amax should be proportional 
to Vact

2. Moreover, the frequency of Fel should be 
twice the driving frequency of Vact. However, for a 
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Fig. 3.    Steps in membrane resonator fabrication. (a) Initial structure, (b) through-hole fabrication, 
and (c) sacrificial etching.

Fig. 4.    Micrographs of membranes. (a) Optical micrograph 
of 65-µm-diameter membrane and (b) scanning 
electron micrograph of 26-µm-diameter membrane.
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semiconductor membrane, such as non-doped GaAs, 
an electrostatic force cannot be generated because 
carriers in the semiconductor cannot respond to a 
high-frequency electric field. Fixed charges in the 
GaAs layer, which originate from residual impurities 
or the surface state in molecular beam epitaxy growth 
[�2], [�3], play a significant role. The Coulomb force 
Fc is generated between an oscillating voltage Vact 
applied from the probe and fixed charges in the semi-
conductor membrane. In the Coulomb force model, 
the resonant amplitude Amax is proportional to Fc. 
Therefore, Amax should have a linear relationship with 
Vact. Furthermore, the force frequency of fc should be 

equal to the driving frequency of Vact. The experimen-
tal results shown in Fig. 5 agree well with the Cou-
lomb force model.

4.2   Higher-order vibration
The resonant frequency of a circular membrane 

resonator is given by the following formula [�4].

fmn = λ2mnh
2π (d/2)2   

�
�2 (1-v2) 

E
ρ  , (�)

where λmn is the vibration constant determined by the 
vibrational mode, h is the membrane thickness, d is 
the membrane diameter, ν is Poisson’s ratio, E is 
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Young’s modulus, and ρ is the material density. The 
ratios of higher-order modes to the fundamental 
mode (fmn/f00) are 2.08, 3.42, and 4.64 in decreasing 
order.

The resonant properties of the measured fundamen-
tal and higher-order modes of the GaAs membrane 
resonator with dimensions d=65 µm and h=200 nm 
are listed in Table 1. The resonant frequency range of 
this membrane was from 0.74 to 3.43 MHz. The 
ratios of the higher-order modes to the fundamental 
mode were 2.23, 2.93, and 4.64. These deviations of 
the measured ratios from the described theoretical 
values are attributed to the effects of holes or strain 
[�5].

The normalized amplitude, which is defined by 
Amax/Vact, decreased with increasing frequency of the 
higher-order modes. Higher-mode vibrations are dif-
ficult to excite because of their larger effective spring 
constant. At this point, the maximum applied voltage 
Vact, which is �0 V, is a limiting factor for high-order 

mode excitation and detection. The maximum mea-
surable frequency of the fundamental mode is also 
limited to about �0 MHz. More efficient exciting 
conditions and lower-noise detection techniques will 
improve the measurable limit of vibration. Note that 
there is no limitation on the actuation frequency in 
this method, unlike in conventional optical methods 

Table 1.    Resonant properties of fundamental/higher-
order modes of the 65-µm-diameter GaAs 
membrane resonator.
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such as laser interferometry. A smaller, thinner mem-
brane, such as a graphene nanomembrane [�6], will 
be suitable for this SPM-based method.

4.3   Mapping of waveform distribution
Since an SPM has nanometer-order spatial resolu-

tion, we expect our method to enable the mapping of 
the waveform distribution of nanoresonators [7]. The 
displacement distribution will improve our understand-
ing of the mechanical properties of nanoresonators.

Figures 7 and 8 show amplitude distributions of the 
fundamental mode and a higher-mode of the 26-µm-
diameter membrane shown in Fig. 4(b). Dotted lines 
are calculated waveforms for a circular membrane. 
The actuation voltage Vact was kept constant for each 
measured point. Good agreement between the mea-
sured and calculated amplitude distributions is 
important for future applications, such as Young’s 
modulus determination and accurate calibration of 
mass, force, and charge sensing. 

For a tapping force of 5 nN and tip radius of 30 nm, 
the probe-sample contact radius was estimated to be 
about � nm [�7], which is much smaller than the spot 
size of optical systems. This means that the present 
method has the potential to determine the mechanical 
properties of much smaller areas than conventional 
methods. A more detailed investigation will help us 
understand the effect of very small defects or strain in 
nanoresonators induced by the fabrication process.

5.   Conclusions

We detected nanometer-order amplitudes at mega-
hertz-order frequencies using a vibration analysis 
method where vibration actuation and detection are 
performed simultaneously using the probe of an 
SPM. An accurate vibration analysis can be per-
formed without any probe interaction effect. We have 
shown that the waveform distribution of the funda-
mental and higher-order modes can offer a new per-
spective on the effects of nanometer-order mechani-
cal structures, such as defects and strain. Since the 
experimental setup of our technique is very simple, 
this SPM-based technique should be a powerful tool 
for vibration analyses of nanoresonators.
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