
� NTT Technical Review

1. Introduction

Computers and the Internet have brought big
changes to the world, and along the way the technol-
ogy that has contributed the most to those changes is
programming. The changeable nature of programs
for servers and clients is the main reason the Internet
can provide various information flows and enhance
the freedom of communication. Furthermore, the
continual advances being made in programs for com-
puter graphics let us watch spectacular movies and
special effects. The power of computers arises
through programming, and it can be said that the
essence of computerization is programming.

It has often been thought that only persons with
special skills or knowledge can program. As the
application range of computers expands, a division of
labor has arisen, where one person gets the idea for an
application and another person writes the program for
it, with the actual programming relegated to the
project’s lowest priority. In other words, program-
ming is taking longer and longer in spite of the steady
infiltration of computers into our lives.

Programming is important from the standpoint of
literacy education. Children intuitively understand
dynamics. For instance, intuition about dynamics
tells children that if they stack blocks in certain way,
the stack will collapse. Rules restricting actions are

not needed when we have intuition about the laws of
physics.

On the other hand, when we do not have intuition
about the laws of physics, we must follow rules. For
instance, consider a storeroom in which loads are
stacked. To prevent a collapse, the rule in this case
might be that four loads can be stacked. But if we
have intuition about the laws of physics, we would
never stack loads too high in the first place. That is to
say, we would not need stack height rules.

In using computers, what are the consequences of
not knowing the fundamental laws of computeriza-
tion? There are a lot of rules that we must obey to use
a computer. Because we lack intuition about the fun-
damental laws, we must remember a lot of rules. If
we forget the rules, a file may vanish, or even worse,
considerable inconvenience may result. Moreover,
the rules change over time. Considering the ever-
changing nature of software, operating systems, and
computer hardware, it would be worthless to learn the
rules by heart. Education about the fundamental laws
of computerization is needed. Knowledge of these
laws reduces the number of rules that must be learned
to use a computer safely. Because programming is the
main characteristic of the computer, programming
education will help learners grasp the fundamental
laws of computers.

2. Viscuit

Viscuit [1]–[3] is a visual programming language

Special Feature: Cutting-edge Technologies for Seeing and Showing

†	 NTT Communication Science Research Laboratories
	 Atsugi-shi, 243-0198 Japan

Computer Programming Education
Using the Visual Programming
Language Viscuit
Yasunori Harada†

Abstract
This article introduces the visual programming language called Viscuit, describes how it is used in

practice to promote computer programming education, and explains why programming education is
necessary.

Vol. 8 No. 11 Nov. 2010 �

Special Feature

for manipulating pictures on the basis of rules. The
interface was designed for small children (there are
no menus, right-mouse-button operations, or double
clicks), but an adult can use it without stress. An
example of how Viscuit is used is shown in Fig. 1.
When we draw a picture, the picture becomes some-
thing that can be used by a program. We represent a
program by a pair of eyeglasses. First, we drag sev-
eral parts (e.g., fishes) onto the stage (upper right in
Fig. 1). Then, we drag a pair of glasses and drag two
parts into its lenses. The change from the left lens to
the right lens represents a temporal change for the
parts on the stage. The scene in the left lens is replaced

by the scene in the right lens. Since the fishes in the
left and right lenses are in different relative locations,
this program causes the parts on stage to move. The
fish on stage is replaced by one slightly further to the
left, so it appears to move ahead from right to left.

In the glasses in Fig. 2, the left lens has a straight
worm and the right one has a bent worm. This means
that a straight worm turns into a bent one. The straight
worm on the stage becomes a bent one. What happens
when we add other worms onto the stage. When we
drag a straight worm onto the stage, it immediately
changes into a bent one. But when we drag a bent
worm onto the stage, it does not change. So there are
many bent worms and no straight ones on the stage.

When I ask children what we can do to straighten
the bent worm, many get the idea of exchanging the
right and left parts in the glasses. In Fig. 3, the bent
worm is on the left and the straight worm is on the
right. Sure enough, the bent worms immediately
become straight. Next, I change the left and right
parts of the glasses again and the straight worms
become bent. Sometimes, I repeat this. Changing the
left and right parts in the glasses causes the worms to
change shape: bent or straight.

At this point, I ask what I should do so that the
worm stretches out and contracts continuously?

Parts

Background color

1 sec.

Fig. 1. Basic screen of Viscuit.

Fig. 2. Picture drawing (1).

� NTT Technical Review

Special Feature

Several children can arrive at the correct answer after
about five minutes of trial and error. Moreover, with
a hint (I show them two pairs of glasses), most chil-
dren can get it. The correct answer is to arrange two
pairs glasses, as shown in Fig. 4. The worms are ani-
mated by stretching and contracting. When other
worms are added, they are also animated. I think that
there is a barrier between the case of one pair of
glasses and the case of two pairs. The former is just a
command for controlling the computer. Children
familiar with machines and devices know that press-
ing a switch will activate it (e.g., a wireless remote
controller). When we operate such devices, some-
thing moves or changes in response to the operation.
In other words, the operator is issuing an order. The
latter is a definition of the computer’s behavior. When
children arrive at the correct answer, the worms begin
to animate. This means that they have programmed
their computers. The glasses become the description
of the movement rather than the simple order: “If a
worm is bent, then it straightens; if a worm is straight-
en, then it bends.” And the children know that the
program has a meaning: the machine moves auto-
matically by means of a description of the movement
rather than working by this human order.

This is the first programming experience for these
children. Next, they learn about improving a pro-
gram. In fact, the worm cannot move forward prop-
erly, but merely stretches on the spot. They need to
adjust the relative positions in the lenses. They can
make a worm to go forwards or backwards by adjust-
ing the relative positions of its pictures.

Some children who understood this concept under-
took the challenge of making a three-frame anima-
tion. In the three-frame animation with three pairs of
glasses, the three parts (e.g., A, B, and C) must be
made to change in turn (e.g., A->B, B->C, and C->A).
The children guessed the movement that the three
frames would produce without learning it and they

succeeded in making an animation. When the com-
puter was regarded logically in this way, the children
were able to learn that it was a partner that they could
easily work with.

A more advanced example is shown in Fig. 5. The
upper glasses mean that the fish goes ahead (just as in
Fig. 1). The lower glasses (newly added) mean that
when a fish hits seaweed, it avoids the seaweed. The
fish on the stage swims forward and avoids seaweed.
This example shows a complicated programming
condition. A function playing a key role in this lan-
guage is soft-rewriting [4]. It matches the placement
of the picture flexibly and rewrites it depending on
the gap. This function makes Viscuit very soft (flexi-
ble) and a highly expressive programming language.

A game that one fourth grader made is shown in
Fig. 6. Using a game pad and keyboard operation, we
can switch the glasses on and off. The goal of the
game is to avoid hitting a wall or obstacle. Although
the boy who made it had no computer skills when he
started, he was able to make this game in only 200
minutes. He got the idea for the game from other
children and he gave the game various degrees of dif-
ficulty. He learned programming skills in a very short
time and was able to express himself.

The games that can be made with Viscuit are limit-
ed. Because there are no variables in a Viscuit pro-
gram, it is very hard to use numerical values, such as
keeping score in a game.

3. Hands-on workshops

In 2009, I conducted nearly 50 workshops around
Japan at about 30 different locations. I kept the fol-
lowing ideas in mind.
(1)	� Organize the workshops so that participants

show things to each other.
When children understand information that is

useful to themselves, they think that it will also be

Fig. 4. Picture drawing (3).Fig. 3. Picture drawing (2).

Vol. 8 No. 11 Nov. 2010 �

Special Feature

useful to other people. Thus, we often observe chil-
dren teaching each other. If the participants have not
yet established friendships, we must locate their
desks and computers carefully to enable natural con-
versation.

(2)	 As much as possible, do not teach.
Because the functions of Viscuit are easy to find,

children can discover them by themselves by trial and
error. Education based on letting children discover
things by trial and error on their own is ideal.

Fig. 5. Condition estimation.

Goal

Complete

New start

Fig. 6. Game made by a fourth grader.

� NTT Technical Review

Special Feature

Computers offer many advantages in this type of edu-
cation because they allow repeated trial and error
safely.
(3)	 Open the door to the joy of mathematics.

Some children want to control the animations pre-
cisely. The glasses have a hidden button permitting
this, which we show only to children who demand
greater control of the movement. When this button is
pressed, a part’s location is expressed with a numeri-
cal value. We give these children the numerical value
expression and this increases their interest in mathe-
matics.
(4)	 Explaining to parents is important.

The importance of programming is often not fully
grasped by adults. We therefore explain Viscuit care-
fully to parents observing the workshop.

4. Need for programming education

The workshop is not only for children; it is also for
university students and adults. The reactions of par-
ticipants reveal that there is a barrier to programming
in all generations, which means that they cannot

acquire programming skills naturally through daily
living.

In education, the importance of 21st Century Skills
[5] (e.g., critical thinking, communication skills, and
autonomous learning) is often debated. Such skills
are undoubtedly important, but programming is a
skill that cannot be acquired naturally. I think that, for
future prosperity, everyone should have an intuitive
understanding of programming.

References

[1]	 Viscuit website (in Japanese).
	 http://www.viscuit.com/
[2]	 NTT Group Communication EXPO—R&D Exhibit Report, NTT

Technical Review, Vol. 4, No. 5, pp. 14–21, 2006.
	 https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr2006

05014.pdf
[3]	 Y. Harada, “Software Development for Hands-on Workshops,” Proc.

of the 50th Programming Symposium by the Information Processing
Society of Japan, Kanagawa, Japan, 2009 (in Japanese).

[4]	 Y. Harada and R. Potter, “Fuzzy Rewriting––Soft Program Semantics
for Children,” Proc. of the 2003 IEEE Symposium on Human Centric
Computing Languages and Environments, Vol. 1, No. 1, pp. 39–46,
Auckland, New Zealand, 2003.

[5]	 http://www.p21.org/

Yasunori Harada
Senior Researcher, Communication Environ-

ment Research Group, Media Information Labo-
ratory, NTT Communication Science Laborato-
ries.

He received the M.E. and Ph.D. degrees in
information engineering from Hokkaido Univer-
sity in 1989 and 1992, respectively. He joined
NTT Basic Research Laboratories in 1992. He
was a researcher in the Japan Science and Tech-
nology Agency from 1998 to 2001. He was a
project manager in the Information Technology
Promotion Agency of Japan from 2004 to 2006.
He started to develop Viscuit in 2003.

