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1.   Introduction

Nowadays, many people enjoy a vast amount of 
digital data such as text, images, music, and videos 
downloaded from the Internet via broadband network 
access. Surveillance cameras automatically capture 
public scenes every day, and these videos are stored 
in huge data repositories. In stock markets, automated 
computer agents generate a huge amount of transac-
tion records for every second. 

Since the available datasets are so huge that no 
human can analyze them manually, many researchers 
have tried to use statistical and probabilistic models 
to analyze their complex properties. Typically, these 
models represent complex data by a stochastic pro-
cess (model) with a few parameters. These parameters 
are tuned (trained) by machine learning [1] tech-
niques to explain the observed data as much as pos-
sible: the idea is that if we can explain the observation 
set well, we may have some confidence that the 
learned parameters and the chosen model represent 
(part of) the essence of the data.

Many statistical models have been proposed for 
complex data analysis. One of the most popular tech-
niques uses mixture models, which have proven to be 
very useful in many studies and domains. A mixture 
model assumes that the observed data are generated 

by a small number of hidden components, each of 
which has different parameters (characteristics). The 
model estimates the properties of this mixture of hid-
den components from the given data.

This article explains the idea and the usefulness of 
mixture models and their extension for complex data 
analysis. It also introduces an application of the mix-
ture model to the field of computer vision for target 
tracking. Section 2 explains a standard mixture model 
using an example of movie scene understanding. Sec-
tion 3 introduces a recent mixture model extension. 
Section 4 reports research by my colleagues and I on 
target tracking and shows some results.

2.   Mixture model

Assume that we have a camera that captures an 
ordinary scene of pedestrians on a street in Tokyo. 
Many people are visible in the scene. The captured 
images include many human activities: some people 
are just walking, but their walking directions and 
speeds are different; a few business people walk rap-
idly while using cell phones; and some kids are run-
ning around. How can we model, or represent, such 
complex information with a statistical model?

The mixture model assumes that these complex 
data are generated by a number of different sources. 
Each source is called a component, characterized by 
a unique pattern of data outputs. We understand the 
given data as the mixture of these different patterns 
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generated from the multiple components. In this 
example, people are generating the visual stimuli. We 
assume that personal behavior can be categorized into 
a manageable number of patterns: walking, running, 
using cell phones, carrying luggage, etc. A complex 
scene with a number of people can be decomposed 
into several behavior patterns. That is, a captured 
video can be understood as a (complex) mixture of 
these different sources (Fig. 1).

More technically, the mixture model assumes that 
K hidden (latent) components with different parame-
ters (characteristics) qk underlie the observed data X 
= {xi}. Each portion of the observed data is generated 
from one of these hidden components, and the total 
amount of data generated by component k is defined 
by its mixing ratio πk. The model is formulated as 
follows:

p(X) = 
i
P

K
∑
k=1

pkp(xi|qk),� (1)

where p(x) denotes the probabilistic density function 

of predicate x and

K
∑
k=1

pk = 1,pk > 0.

We tune (learn) the parameters θk and the mixing 
ratios πk of these hidden components in order to 
approximate the given observed data. This parameter 
learning can be carried out automatically by maxi-
mizing a standard evaluation function.

Some results of using a mixture model to analyze a 
set of two-dimensional (2D) points are shown in 
Fig. 2. The small colored dots denote data points. The 
dataset is assumed to be generated by five mixture 
components. Each point is generated from one of the 
five components where its color indicates the source 
component. Each component is modeled as a 2D 
Gaussian distribution and generates 50 data points. 
Red stars and corresponding black ellipses indicate 
the means and standard deviations of estimated 
Gaussian components yielded by the Gaussian mix-
ture model. K is fixed and the model is fitted using the 
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Fig. 1.   Illustration of mixture model. 
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Fig. 2.   �Mixture model results estimated from 2D data points with (a) the correct K = 5 and (b) an incorrect K = 10. 
Three components overlap at (0, 0) in (b). 
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variational Bayes method [1], which is an iterative 
computation technique. Figure 2(a) is the result when 
the correct value of K = 5 was chosen, while Fig. 2(b) 
shows an example of an incorrect value, K = 10. As 
shown, the mixture model can derive reasonable mix-
ture component distributions if the specified K is cor-
rect.

Mixture models are basic yet practical tools in 
many problems in several domains. For example, a 
mixture model can be used to describe the back-
ground scenes of a movie [2]; the key advance is 
distinguishing the foreground objects that are the 
focus of attention from the background. Since the 
background has many different surfaces and planes, 
its pixel values can be effectively modeled by a mix-
ture of different pixel value components. A mixture 
model has also been used for automatic speaker rec-
ognition in recorded sounds [3].

3.   Infinite mixtures obtained by 
 nonparametric Bayes models

One problem with using mixture models is that we 
have to determine K in advance. In general, specify-
ing the correct K is very difficult, and using the wrong 
value of K may degrade model fitting very badly, as 
seen in the example (Fig. 2(b)). One popular solution 
is to use an information criterion for choosing the best 
K, i.e., AIC [4] or BIC [5]. In this case, we prepare 
several mixture models with different K values and 
compute the criteria for each learned model.

Recently, another solution, called the nonparamet-
ric Bayes approach, has been developed. It does not 
demand that K be specified. Instead, the model 
chooses an appropriate value for K to explain the 
given data in a probabilistic manner. 

In this article, I introduce the Dirichlet Process 
Mixture (DPM) model, a nonparametric Bayes exten-
sion of usual mixture models. Mathematically, DPM 
represents a mixture of infinitely many components 
(Fig. 3(a)). Thus, it has the potential to fit any mix-
ture. It assumes many possible mixture structures G1, 
G2, …, probabilistically (Fig. 3(b)). Some mixtures 
have higher probabilities and others have lower prob-
abilities. In practice, we have only a finite amount of 
data information: i.e., the number of components can-
not be infinite. DPM chooses the most appropriate 
mixture structure––the values of K and πk––from 
infinitely many candidates. 

A more mathematically precise explanation is 
given below. Formally, DPM is based on the Dirichlet 
process, which is a stochastic distribution of distribu-

tions. However, explaining how DPM can be based 
on a Dirichlet process is not intuitive in the context of 
the mixture model. Therefore, I explain DPM from 
the mixture model viewpoint. The resulting probabil
istic distribution of parameters θ is described as fol-
lows:

G(q) =
∞
∑
k=1

pkdqk (q),� (2)

p(pk) = Stick(g), k = 1, 2, ....� (3)

There are two points to note. First, index k imposes 
no upper limit on K in the summation in Eq. (2). This 
indicates that DPM is an infinite mixture model. Sec-
ond, Stick(γ) is a stochastic process called the stick 
breaking process [6]. The stick breaking process 
(Eq. (3)) randomly generates an infinite number of 
positive scalars that are summed to one. More pre-
cisely, Stick(γ) generates πk according to the follow-
ing equations: 

p1 = v1
 
,� (4)

pk = vk
k

l
P
=

-1

1
(1-vl), k > 1� (5)

p(vk) = Beta(1, g).� (6)

This indicates that the structure of the mixture, 
including the number of components and their mix-
ing ratios, is defined in a stochastic manner rather 
than a deterministic manner: that is, it is defined on 
the basis of sampling from the Beta distribution. Note 
that πk rapidly decreases as k becomes large because 
of the product of vk. Therefore, the stick breaking 
process inherently offers a clustering function: the 
process does not want the mixing ratios to be large for 
many of the components. Given G(θ), the observed 
data X = {xi} is modeled in the same way as the 
original mixture models, except for an infinite num-
ber of components:

p(X) =
i
P
∞
∑
k=1

pkp(xi|qk).� (7)

One reason for using DPM is that the number of 
clusters automatically scales with the data complexi-
ty, and we can automatically find a mixture with an 
appropriate number of components using a standard 
Bayes (probabilistic) machine learning technique. As 
noted, by using DPM we can avoid the need to spec-
ify the number of mixture components, a key weak-
ness of mixture models.

Another advantage of DPM is that it provides an 
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Estimation by DPM, 3rd Gibbs sampling iteration (K = 27)
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Fig. 4.   �Mixture model results estimated from 2D data points by using DPM. (a) An early result (third iteration). The inference 
has not converged yet, and the estimation is not good. (b) After convergence of the Gibbs sampling, the correct 
mixture structure with K = 5 components was recovered automatically.
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Fig. 3.   Illustration of DPM model.
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easy and convenient formulation. Implementing the 
above infinite equations (Eqs. (2) and (3)) in a pro-
gram (with finite memory) is difficult. One solution is 
the Chinese restaurant process (CRP) [7]. In CRP, 
each observed datum (point) is assigned to one of the 
mixture components. Let us denote the assignment of 
the ith item xi to the kth component as zi = k. More-
over, let us denote the total number of data as N. In 
CRP, we use the following rules to determine zi: 

nk, 1 <_ k <_ K
p(zi = k|z1: N¬i) ∝





 .� (8)
g, k = K + 1

This equation computes the probability of the ith 
datum being assigned to the kth component under the 
condition that the assignments of all other data are 
fixed. Here, nk denotes the number of items assigned 
to the kth component and K denotes the number of 
components, counted via N-1 assignments. CRP 
assigns the ith datum to the kth component with a 
probability proportional to the component’s member-
ship. The probability of a new K+1th cluster being 
generated is proportional to γ.

We repeat this process many times with different 
values of i and achieve assignments for all data. Dur-
ing the process, the number of mixture components 
varies. It is known that CRP-based DPM is truly 
equivalent to the formal infinite representations of 
Eqs. (2) and (3).

A simulation result for DPM is presented in Fig. 4. 
We tested the same dataset as used in Fig. 2 and esti-
mated the hidden mixture structure by using DPM. 
We used a CRP representation of DPM and chose 
Gibbs sampling [1] as the inference algorithm. Figure 4(a) 
shows a result in an early iterative step and Fig. 4(b) 
is the final result indicated by the convergence of the 
Gibbs computation. As can be seen, DPM obtained 
the correct K = 5 mixture components. Let me 
emphasize again that there was no need to specify the 
initial value of K: the model automatically found the 
best K to represent the given data.

Because of this advantage, many researchers have 
applied DPM to many problems, including commu-
nity detection from network data [8] and document 
(natural language) modeling [9].

4.   Application: multi-target tracking with  
movement pattern discovery

Here, I describe our work on using the mixture 
model to understand visual scenes. Many developed 
countries and major cities have visual surveillance 
cameras for security. These cameras are useful for 

deterring crimes and the captured data can be used to 
identify accidents or criminal activities. However, it 
is said that surveillance cameras, by themselves, are 
not so effective in deterring truly committed crimi-
nals or terrorists. Detecting anomalous activities as 
precursors to illegal acts still requires human eyes and 
it is impossible for all cameras to be adequately cov-
ered by human observers.

To enable automatic analysis of video streams, 
many researchers have studied the problem of action 
recognition and scene understanding; for example, 
identifying suspicious activities. The technique of 
tracking, which is one of the hot research topics in 
this field, is intended to locate and follow particular 
people against various backgrounds. More techni-
cally, tracking should determine the parameters of the 
objects of focus such as their locations and postures. 
The most common security concern is to track 
humans (in many cases, pedestrians), and many stud-
ies have, of course, addressed this task (e.g., [10]–
[15]).

The outputs of surveillance cameras contain many 
patterns or target movements: the targets run, walk, 
and turn at various speeds and in various directions, 
and objects change their movement to avoid colli-
sions and follow signals. However, many tracking 
models assume that the movement patterns of the 
targets (pedestrians) are invariant. Detecting such 
changes in movement patterns will yield more precise 
tracking. One problem is that we do not know the 
exact, or best, number of such movement patterns. 
Moreover, it is clear that these patterns are context-
dependent: different patterns are exhibited at airports, 
train stations, and shopping malls and on the street.

We have developed a tracking algorithm that can 
solve these problems by using the DPM model [16]. 
Using DPM, we can automatically obtain an appro-
priate number of movement patterns that fit the 
scene’s context. Our developed model can also learn 
these patterns in an online manner: in other words, it 
discovers a novel pattern appearing in a video at first 
sight.

We tested our model with three datasets: one simu-
lated and two real video sequences. A quantitative 
result using log likelihood as a data fitness measure is 
shown in Fig. 5. Our model outperformed a conven-
tional model, which was unable to discover move-
ment patterns. 

A tracking result for an actual video sequence is 
shown in Fig. 6. Colored rectangles indicate the 
tracked targets, and the number above the rectangle is 
the movement pattern index for that frame. As you 
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can see, a target can exhibit different movement pat-
terns over time.

The discovered movement patterns θk for the same 
dataset are shown in Fig. 7. We found six major 
movement patterns. Upward and downward move-
ments had two subpatterns, corresponding to leftward 

or rightward movements. Right-to-left movements 
exhibited a slow movement pattern (green cross) 
while a fast movement pattern had fewer instances 
(purple circle). This differentiation well matches the 
actual sequence: a few persons walked rapidly, but 
the majority walked slowly. Note that these move-
ment patterns were automatically discovered by the 
infinite mixture model based on DPM.

5.   Conclusions

In this article, I introduced mixture models for ana-
lyzing complex data such as video sequences. A stan-
dard mixture model, used in many applications, uses 
a fixed number of mixture components K. DPM is a 
recent development that assumes (mathematically) an 
infinite number of mixture components and can 
therefore adapt to unknown mixtures. My colleagues 
and I have applied DPM to the target tracking prob-
lem. Our system automatically learns movement pat-
terns, and tests showed that it achieved better tracking 
precision than the conventional solution.
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