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1.   Introduction

The rapid development of and changes to wireless 
radio environments require a unified platform that 
can flexibly deal with various wireless radio systems 
[1]. To satisfy this requirement, we are developing a 
flexible wireless system (FWS), which is composed 
of flexible access points and a flexible signal process-
ing unit [2].

The concept of FWS is illustrated in Fig. 1. Multi-
ple wireless signals are simultaneously received by 
flexible access points, which can receive a wide vari-
ety of wireless signals with frequencies ranging from 
several hundred megahertz to several gigahertz. The 
received radio wave data is transferred to the flexible 
signal processing unit through a broadband wired 
access line. The flexible signal processing unit per-
forms multiple types of signal analysis by software 
exploiting software defined radio and cognitive radio 
technologies [3]. If necessary, previously stored data 
at servers can also be used. 

The huge bandwidth necessity for transferring the 
received radio wave data motivated us to develop a 
highly flexible and efficient radio wave data com-
pression technology. To accomplish this goal, we 
applied recently developed compressed sensing tech-
nology. 

Compressed sensing is a new framework for solv-
ing an ill-posed inverse problem of a sparse signal 
[4]. Direct translation of compressed sensing in the 
sense of wireless technology is as follows: radio wave 
data can be received, transmitted, and reconstructed 
using sub-Nyquist rate information without aliasing 
if the original radio wave is sparse. 

In relation to FWS, compressed sensing has two 
advantages. First, it provides universality in wireless 
signal reception regardless of system types. This pro-
vides flexible signal reception because all types of 
signals can be received by a unified signal reception 
method. Furthermore, no modifications are necessary 
even when new wireless systems are introduced. Sec-
ond, it enables signal reception and reconstruction at 
a lower rate than the Nyquist rate. This reduces the 
burden of data transfer between flexible access points 
and the flexible signal processing unit.
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The remainder of this article is organized as fol-
lows: Section 2 reviews basic knowledge about com-
pressed sensing, section 3 describes our compression 
method, and section 4 concludes with a brief sum-
mary of the main points and a mention of future 
work.

2.   Compressed sensing

2.1   Basic concept
A simplified explanation of compressed sensing is 

as follows: A signal projected linearly onto a lower-
dimensional space can be used to reconstruct the 
original higher-dimensional signal with high proba-
bility if the signal is sparse (explained in section 2.2) 
and the projection matrix satisfies the restricted isom-
etry property (RIP, explained in section 2.4). 

In a mathematical sense, compressed sensing can 
be stated as an ill-posed inverse problem. Normally, 
the solution of an ill-posed inverse problem is not 
uniquely determined because the number of equa-
tions is smaller than the number of variables. How-
ever, the solution of an ill-posed inverse problem can 
be uniquely determined by investigating all possible 
cases provided that the signal is sparse. Moreover, if 

an ill-posed inverse problem satisfies RIP and the 
signal is sparse, the unique solution can be found with 
a practical degree of complexity.

For an intuitive understanding of compressed sens-
ing, consider the following simple ill-posed inverse 
problem.

Find m, n, and k such that
m + 3n - 2k = 1
-m – n + k = -1

Normally, the solution is not uniquely determined 
because the number of equations is smaller than the 
number of variables. However, if vector [m k n] has 
only one nonzero element, the unique solution can be 
obtained by investigating all possible cases, as 
below. 

case 1) m≠0, n=k=0 -> m=1 (unique solution)
case 2) n≠0, m=k=0 -> impossible
case 3) k≠0, m=n=0 -> impossible

Although the unique solution is available, this is an 
NP-hard problem for which all possible cases must be 
investigated. Consequently, it becomes impractical as 
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Regular Articles

� NTT Technical Review

the number of dimensions of the signal increases.
This impracticality is overcome if the equation vec-

tor [1 3 -2; -1 -1 1] satisfies RIP. The core achieve-
ment of compressed sensing is that the above NP-
hard problem can be cast into an l1-norm minimiza-
tion problem (explained in section 2.5) if the signal is 
sparse and RIP is satisfied. L1-norm minimization 
problems can be solved by linear programming, 
which is a well established convex optimization 
method, with practical complexity O(n3) [5], [6]. 

Considering the above example, the following two 
statements can be made: First the sparsity of the sig-
nal assures the unique solution for compressed sens-
ing. Second, RIP assures a practical degree of com-
plexity for finding the unique solution for compressed 
sensing.

2.2   Sparse signal
A signal is called sparse when it is represented by a 

small number of nonzero coefficients in any conve-
nient domain. More specifically, N×1 signal X is 
called S-sparse if X is represented by the multiplica-
tion of any N×N transform matrix Y and N×1 coeffi-
cient vector s, and s has only S nonzero coefficients. 
The definition of sparsity is not limited to the orthog-
onal transform domain (i.e., Fourier transform or 
wavelet transform). If a signal is represented in a non-
orthogonal domain, including any user-defined 
domain, the signal is also called sparse [7].

2.3   Measurement
For a given N×1 signal X, measurement is defined 

as the linear projection of X onto M×1 signal Y. The 
M×N matrix F that casts X onto Y is called the mea-
surement matrix. Matrix description is given by 
Y=FX. If X is represented by N×1 coefficient vector 
s in the N×N transform domain Y , it is expressed as 
Y=FYs.

The number of measurements is the number of 
rows in the measurement matrix (M), which is also 
equivalent to the number of dimensions of the output 
signal. Therefore, the compression rate increases as 
the number of measurements increases. Numerous 
studies have been performed to investigate the mini-
mum bound of the necessary number of measure-
ments for a given signal sparsity [8 and references 
therein]. It has been shown that S•log(N/S) measure-
ments are enough for the reconstruction of an S-
sparse signal when measurement matrix F consists of 
random ensembles [9].

2.4   RIP
The most outstanding achievement of compressed 

sensing is the fact that RIP casts an NP-hard problem 
onto an l1-norm minimization method [10], [11]. 

When an M×N measurement matrix F and a N×N 
transform domain matrix Y satisfy the following 
inequality for all S-sparse vectors, matrix Q(=FY) is 
said to obey RIP of order S with d. 

 
(1-d )||s||22 –<||FYs||–<(1+d )||s||22

where ||s||2=Si s2
i and d (0 –<d  <1) is the smallest con-

stant that satisfies the above inequality. 
An intuitive explanation of RIP is as follows: the 

Euclidian distance between any two N×1 S-sparse 
vectors is approximately preserved after the measure-
ment as long as Q obeys RIP. 

It has been proven that RIP is satisfied if measure-
ment matrix F consists of random ensembles, which 
yields the following surprising result: any unknown 
sparse signals can be reconstructed by random mea-
surement [10]. This property provides flexibility for 
the compression of an unknown signal because sig-
nal-independent measurement is possible by the ran-
dom measurement as long as the signal is sparse. 

2.5   Reconstruction
Reconstruction of the compressed sensing refers to 

finding N×1 S-sparse vector s from known M×1 mea-
surement output matrix Y, M×N measurement matrix 
F, and N×N transform matrix Y when Y=FYs 
(S<M<<N). Reconstruction of the original signal s 
can be found via the l1-norm minimization problem, 
as described below, as long as RIP is satisfied. 

min||ŝ||
1 subject to Y=FYŝ, ŝ∈RN,

if RIP satisfies ŝ=s, 

where ||ŝ||
1
=|s1|+|s2|+...|sN| and RN is the set of N×1 

vector. 
The l1-norm minimization problem finds ŝ that 

minimizes the l1-norm subject to Y=FYŝ among all 
possible S-sparse vectors. This seems to be an NP-
hard problem, but it can be cast into a convex optimi-
zation problem and solved by the linear programming 
method. Furthermore, if RIP is satisfied, ̂s is identical 
to the original vector s with high probability [10], 
[11]. 

If the measurement matrix consists of random 
ensembles, flexible reconstruction is possible. In the 
case that signal X is proved to be more sparsely 



Regular Articles

Vol. 9 No. 3 Mar. 2011 �

represented in another basis matrix Y’, surprisingly, 
one does not need to conduct the measurement again 
since the l1-norm minimization problem can be 
solved with Y and a new Q’(=FY’). This indicates 
that once the projection has been performed, the 
reconstruction can be performed with any convenient 
basis matrix.

There are other approaches to the reconstruction of 
compressed sensing such as an orthogonal matching 
pursuit algorithm, which uses a greedy iterative algo-
rithm [12]. 

2.6   �Comparison between conventional compres-
sion and compressed sensing

The difference between the conventional compres-
sion and compressed sensing is shown in Fig. 2. The 
conventional sample-then-compress method com-
presses the signal by the signal-specific compression 
method, which yields the optimal compression (S 
dimensions). On the other hand, compressed sensing 
conducts a signal-independent linear projection of the 
original signal onto a lower-dimensional space (M-
dimensional, S<M<<N), which yields poor compres-
sion performance. Therefore, it can be stated that the 
conventional compression method is superior to com-
pressed sensing for the known signals in terms of 
compression performance. 

However, compressed sensing has the following 
advantages compared with the conventional compres-
sion method. First, it is suitable for dealing with an 
unknown sparse signal. Second, it is robust to the 
introduction of new types of wireless systems. When 
new types of wireless systems are introduced, receiv-
ers (flexible access points in Fig. 1) do not need to be 
modified because the signal-specific processing bur-
den is moved from the receivers to the server (flexible 
signal processing unit in Fig. 1). Third, it reduces the 
burden on receivers. For example, consider a sparse 
signal of unknown frequency. In the case of the con-
ventional sampling method, receivers must conduct 
both a fast Fourier transform and a search for nonzero 

coefficients. On the other hand, in the case of com-
pressed sensing, receivers only need to conduct a 
linear projection.

3.   Application of compressed sensing for FWS

This section describes two radio wave data com-
pression methods that utilize compressed sensing. 
Both methods try to exploit the flexibility of com-
pressed sensing by utilizing prior information. One 
method uses a random sparse measurement matrix 
based on random sampling [13] (or equivalently, ran-
dom discard from all of the sampled data). The other 
uses a random dense measurement matrix that con-
ducts a full linear projection of sampled data [14].

3.1   Combined Nyquist and compressed sampling
The goal of this sampling method is to achieve 

Nyquist-rate sampling of the known signal (hereinaf-
ter called the decoding signal) and compressed-rate 
sampling of the unknown signal (hereinafter called 
the sensing signal) in a single analog-to-digital con-
verter. To achieve this goal, the following processes 
are carried out. 

At each flexible access point, multiple signals are 
simultaneously received, filtered, and down-convert-
ed to the intermediate frequency (IF) band. In particu-
lar, decoding signals are converted to a lower center 
frequency band than sensing signals, as shown in 
Fig. 3. Signal down-conversion is done by tunable 
local oscillators and mixers. All down-converted sig-
nals are sampled by our method and transferred to the 
flexible signal processing unit. 

Details of the combined Nyquist and compressed 
sampling method are as follows. Suppose that L 
decoding signals and M sensing signals are aligned in 
the IF band, and the total bandwidths of these signals 
are represented by Bdec and Bsens, respectively. For the 
convenience of the explanation, Bgrid and BNyq are 
defined as (4Bdec+2Bsens) and (2Bdec+Bsens), respec-
tively. The purpose of the above setting is to achieve 

X Sampling X̂
N S NN

Compression Decompression

X X̂
N M N

Compressed sensing Reconstruction

Fig. 2.   Comparison between conventional compression and compressed sensing.
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(1) Nyquist-rate sampling of the decoding signals 
without aliasing from the sensing signals and (2) 
compressed-rate sampling of the sensing signals in a 
single analog-to-digital converter simultaneously. 

The detailed procedure of our method is as follows. 
First, Bgrid-rate sampling is conducted. Second, only 
some of the even (odd) samples are randomly dis-
carded while all of odd (even) samples are preserved. 
The locations of randomly discarded samples, which 
are determined by the random sequences generator, 
can be known to the flexible signal processing unit if 
the initial seed of the random sequence generator is 
shared. Hereinafter, all the odd samples and the 
remaining even samples are called fixed samples and 
random samples, respectively. They are transferred to 
the flexible signal processing unit via the wired 
access line. 

The mathematical description of our method is as 
follows. For simplicity, we consider multiple sparse 
signals in the frequency domain. The IF band signal  
X=(Ys) is sparsely represented in the frequency 
domain. The basis matrix Y is an N×N inverse Fou-
rier transform, and s is the N×1 coefficient vector of 
X in the frequency domain. Note that s has sequential 
nonzero values in the lower frequency region and 
randomly sparse nonzero values in the higher fre-
quency region (e.g., s=[1111100100010001]). The 
K×N projection matrix F has the following sparse 
representation.

1 0 0 0 0 0 0 … 0
0 0 1 0 0 0 0 … 0
0 0 0 1 0 0 0 … 0

F=  0 0 0 0 1 0 0 … 0
0 0 0 0 0 0 1 … 0

0 0 0 0 0 0 0 … 1

…………………… …





















� (3)

Note that each column indicates a sample point of 
the signal. Every odd sample is preserved while some 
of the even samples are randomly discarded. 

Then, the compressed sensing matrix Q(=FY) 
becomes a K×N matrix consisting of every odd row 
and randomly selected even rows of the inverse Fou-
rier transform matrix. Projection vector Y is repre-
sented by Qs and signal reconstruction becomes the 
inverse problem of s =Q-1Y. This inverse problem is 
solvable as an l1-norm minimization problem because 
s is sparse and Q consists of randomly selected rows 
of the inverse Fourier transform matrix*.

Using transferred fixed and random samples from 
flexible access points, the flexible signal processing 
unit conducts the decoding and sensing process as 
follows.

First, the decoding signals are decoded using only 
fixed samples, which is equivalent to BNyq-rate sam-
pling. Note that aliasing of the sensing signals occurs 

*	 Compressed sensing theory has proved that randomly permutated 
Fourier ensembles satisfy RIP. Therefore, we can use randomly 
selected rows of an inverse Fourier transform matrix as a sensing 
matrix because Fourier ensembles and inverse Fourier ensembles 
have identical statistical characteristics.
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Fig. 3.   Example of frequency alignment of multiple signals. 
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because the sampling rate is insufficient. However, it 
does not cause interference with the decoding signals. 
Therefore, the decoding signals can be decoded by 
using conventional decoding algorithms without 
aliasing. An example of fixed samples in the frequency 
domain is shown in Fig. 4. Although the aliasing of 
the sensing signals occurred owing to the insufficient 
sampling rate, the decoding signal parts are intact. 
Consequently, Nyquist-rate decoding performance is 
achieved for the decoding signals. Second, the decod-
ing signal is subtracted from both the fixed and ran-
dom samples. Third, the sensing signals are recon-
structed using both fixed and random samples, whose 
decoding signals have been subtracted. The recon-
struction is done by solving the l1-norm minimiza-
tion problem. An example of the reconstructed signal 
in the frequency domain is shown in Fig. 5. Note that 

only sensing signals are reconstructed because the 
decoding signals have been removed. Fourth, the 
sensing signals are identified in the reconstructed 
signal by a conventional spectrum sensing algorithm 
such as energy detection. 

Some experimental results are shown in Figs. 6 and 
7. Experiments were performed on 310-MHz-band 
frequency shift keying (FSK) signals transmitted by 
radio frequency identification (RFID) tags. The RFID 
tag bandwidth and the total bandwidths of decoding 
signals and sensing signals were 0.3, 1.73, and 6.54 
MHz, respectively. The channel between the RFID 
tags and a flexible access point was a non-fading 
additive white Gaussian noise channel. 

Figure 6 compares the theoretical and experimental 
symbol error rates for the decoding signal in terms of 
Es/No (energy per symbol per noise power spectral 

Frequency
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D1D2 D2D1S1, S2 aliased D1D2 D2D1S1, S2 aliased

Bsens BdecBdec

Non-aliased decoding signal
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Fig. 4.   Frequency domain representation of fixed samples.
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Fig. 5.   �Frequency domain representation of sensing signals reconstructed from fixed and 
random samples after subtraction of the decoding signal. 
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density). In the experiment using the conventional 
method, only the down-converted decoding signal 
was sampled at the Nyquist rate. In the experiment 
using our method, the decoding signal and the sens-

ing signals were combined in the IF band and sampled 
by using our method. The performance curve for our 
method matches those for the theoretical and conven-
tional methods well, which shows that our sampling 
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method guarantees Nyquist-rate decoding perfor-
mance for the decoding signal. 

The detection success rate is shown in Fig. 7. All 
curves show relatively poor performance at a low 
compression ratio. This is because reconstruction 
fails if the number of samples is insufficient. How-
ever, Pd (detection success rate) increases with the 
compression ratio. Approximately, 70% of the com-
pression ratio can be achieved when Es/No is higher 
than 17.5 dB.

3.2   �Compressed sensing with weighted measure-
ment matrix

Our goal for the weighted measurement matrix 
generation is to reduce the required number of mea-
surements by using prior knowledge of the signal.

A block diagram of compressed sensing with 
weighted measurement matrix generation is shown in 
Fig. 8. The weighted measurement matrix is gener-
ated by multiplying the random measurement matrix 
and weight matrix, where the weight matrix is gener-
ated taking into consideration prior knowledge such 
as the signal’s history. Note that identical weighted 
and random measurement matrices are generated by 
both the flexible access points and the signal process-
ing unit for the reconstruction. If the weight needs to 
be updated, necessary parameters are transmitted 
from the signal processing unit to the flexible access 
points. 

To verify the efficiency of this method, we con-
ducted an experiment using an RFID signal consist-
ing of a periodically transmitted FSK signal. The total 
bandwidth and the received signal bandwidth were 5 
and 0.6 MHz, respectively. The time occupancy rate 
of the received signal was 0.25. Therefore, the time-
frequency domain signal sparsity was 0.03. The time 
and frequency domain weights were set to 2.0 and 1.5 
using the signal reception history. The detection suc-
cess rates for the conventional method and our 
method are compared in Fig. 9. The compression 
rates needed for perfect signal detection were 0.13, 
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Fig. 8.   Block diagram of compressed sensing with weighted measurement matrix generation. 
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0.12, 0.09, and 0.08, respectively, when the applied 
weights were no weight, time domain weight, fre-
quency domain weight, and time-frequency domain 
weight. These results confirm that enhanced 
compression is achieved by our method. 

4.   Conclusion

To satisfy the requirement for a unified wireless 
platform, we are developing a flexible wireless sys-
tem. As a partial fulfillment of such as system, this 
article described a highly efficient radio wave data 
compression method based on currently developed 
compressed sensing technology. It also described two 
radio wave data compression methods utilizing com-
pressed sensing technology. Experiments results 
verified that a compression rate that is slightly higher 
than the Nyquist rate of the original sparse signal can 
be achieved. Our future research will include devel-
oping further enhanced data compression methods in 
terms of realtime operation and practical processing 
burden using compressed sensing technology.
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