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1.   Introduction

Quantum computers are expected to enable high-
speed computing and many researchers have made 
numerous attempts to realize them. However, a prac-
tical quantum computer has not yet been made. Most 
of the attempts are based on the standard model of 
quantum computation, which is called the quantum 
circuit model or gate-based quantum computation 
[�], [2]. The main resources for universal quantum 
computation, that is, for implementing an arbitrary 
unitary operation, are unitary gates that perform one-
qubit and two-qubit unitary operations. A computa-
tion proceeds by applying unitary gates to an input 
state to transform it into an appropriate output one. 
Projective measurements of the output state give us 
the final output of the computation, which is classical 
information.

In 2003, on the basis of an idea described by Got-
tesman and Chuang [3], Nielsen proposed a model of 
quantum computation [4] strikingly different from 
the standard model. This model is called teleporta-
tion-based or measurement-only quantum computa-
tion. The main resources required for universality are 

only projective measurements. A computation pro-
ceeds by performing projective measurements on an 
input state to transform it into an appropriate output 
one. Projective measurements on the output state give 
us the final output of the computation. This model has 
recently attracted attention since it allows us to make 
completely new attempts to realize quantum comput-
ers. An important problem is to minimize the re- 
sources required for universality. From the practical 
standpoint, solutions to this problem will contribute 
to the performance of unitary operations on a quan-
tum computer since it will be able to use only a lim-
ited amount of resources. On the theoretical side, they 
will contribute to our understanding of the computa-
tional power of projective measurements.

Let us consider the problem of minimizing the 
resources required for universality in measurement-
only quantum computation. There have been many 
studies in this direction [5]–[8]. The best known 
result is that a set consisting of one two-qubit projec-
tive measurement and infinitely many kinds of one-
qubit projective measurements with one ancillary 
qubit is sufficient for universal quantum computation 
[8]. Since it is impossible to decrease the number of 
two-qubit projective measurements and the number 
of ancillary qubits, we shall focus on one-qubit pro-
jective measurements. Thus, our problem is restated 
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as the problem of constructing a small set of one-
qubit projective measurements such that the set with 
one two-qubit projective measurement and one ancil-
lary qubit is sufficient for universal quantum compu-
tation.

The state of a qubit corresponds to a point on the 
unit three-dimensional sphere (Fig. 1) [�] and a one-
qubit projective measurement corresponds to an axis, 
which is a line through the origin of the sphere. There 
are two points of intersection between an axis and the 
sphere. A one-qubit projective measurement proba-
bilistically projects a one-qubit state into one of the 
two states corresponding to the two intersection 
points on the sphere. The best known result requires 
the set consisting of one-qubit projective measure-
ments corresponding to all the axes of the sphere’s 
X-Y plane and the Z axis [8]. Until recently, it was not 
known whether a smaller set of one-qubit projective 
measurements could be constructed for universal 
quantum computation.

In this article, I describe my recent result that this 
can be done [9]. Specifically, I show that the set con-
sisting of one-qubit projective measurements corre-
sponding to all the axes of the sphere’s X-Y plane 
(with one two-qubit projective measurement and one 
ancillary qubit) is sufficient for universal quantum 
computation. In other words, I show that the one-
qubit projective measurement corresponding to the Z 
axis can be removed from the best known set. A key 
finding is that the one-qubit projective measurement 
corresponding to the Y axis can often be used in place 
of the one-qubit projective measurements corre-
sponding to the X and Z axes. In particular, a key 
ingredient of my procedure for implementing an arbi-
trary one-qubit unitary operation is a simplified ver-
sion of quantum teleportation (called state transfer) 
based on the one-qubit projective measurement cor-
responding to the Y axis.

2.   Measurement-only quantum computation

2.1    Quantum states and projective measure-
ments

As described above, the state of a qubit corresponds 
to a point on the unit three-dimensional sphere  
(Fig. �). The two points of intersection of the Z axis 
and the sphere are represented by |0〉 and |�〉. The 
other points on the sphere correspond to superposi-
tion states of |0〉 and |�〉. For example, the two points 
of intersection of the X axis and the sphere are
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points of intersection of the Y axis and the sphere 
are 
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|�〉. In general, a one-

qubit state is represented as a |0〉 + b |�〉, where a and 
b are complex numbers such that |a |2 + |b |2=�.

A one-qubit projective measurement corresponds 
to an axis L, which is a line through the sphere’s ori-
gin. It probabilistically projects a one-qubit state into 
one of the two states corresponding to the two points 
of intersection of L and the sphere. The probability 
depends on the state being measured. The measure-
ment gives us the classical outcome (� or -�) repre-
senting which of the two states the original state is 
projected into by the measurement. We call such a 
measurement an L-measurement. For example, the 
Z-measurement of a qubit in state a |0〉 + b |�〉 projects 
the state into |0〉 with probability |a |2 and into |�〉 with 
probability |b |2. In general, an axis of the sphere’s X-Y 
plane is represented by (cosq )X+(sinq )Y for some 
real number q∈[0,2p). It corresponds to the one-qubit 
projective measurement that probabilistically proj-
ects a one-qubit state into one of the two states 
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2.2   Measurement-based quantum circuits
A computational procedure in measurement-only 

quantum computation can be represented by a mea-
surement-based quantum circuit (very similar to the 
standard quantum circuit [2]). It consists of wires and 
measurement gates that correspond to qubits and pro-
jective measurements, respectively. In a circuit dia-
gram, a wire is represented by a horizontal line and a 
measurement gate is represented by the axis symbol 
corresponding to the projective measurement on the 
wires on which it is performed. Information flows 
through the circuit from left to right.

As an example, consider the measurement-based 
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Fig. 1.    Unit three-dimensional sphere representing one-
qubit states.
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quantum circuit depicted in Fig. 2. It represents the 
following procedure, where the initial state of qubit � 
is |j〉 and that of qubit 2 is an arbitrary one-qubit 
state.
(�) Perform the X-measurement on qubit 2.
(2)  Perform the Z⊗Z-measurement on qubits � and 

2.
(3) Perform the X-measurement on qubit �.
I do not give details of the Z⊗Z-measurement here, 
but in general it generates a two-qubit state that can-
not be represented as a product form (called entangled 
state).

The procedure outputs the state s |j 〉 on qubit 2 for 
some unitary operation s, which is in a special class 
of unitary operations called Pauli operations. An 
important point is that s is determined by the classi-
cal outcomes of the projective measurements in the 
procedure, and the inverse of s can be performed by 
the Y-measurements (and one two-qubit projective 
measurement and one ancillary qubit). Thus, s can be 
easily removed and thus ignored. That is, the proce-
dure transfers an arbitrary one-qubit state from qubit 
� to qubit 2 (up to Pauli operations) and thus is called 
state transfer [6]. It can be regarded as a simplified 
version of quantum teleportation.

As shown in [6], state transfer is a key ingredient of 
a procedure for implementing an arbitrary one-qubit 
unitary operation. More precisely, a procedure for 
implementing such an operation (up to Pauli opera-
tions) can be obtained by replacing the projective 
measurements in the state transfer with ones that 
depend on the desired operation. For example, a pro-
cedure for implementing a Hadamard operation H 
can be obtained by replacing the first measurement 
with the Z-measurement and the second measurement 
with the Z⊗X-measurement, where H is the one-qubit 
unitary operation that maps |0〉 and |�〉 to 
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3.   Universal set of projective measurements

I will show that the set consisting of the one-qubit 
projective measurement corresponding to the axis 
(cosq )X+(sinq )Y for any q∈[0,2p) (with one two-
qubit projective measurement and one ancillary 
qubit) is sufficient for universal quantum computa-
tion. To do this, I will show that an arbitrary unitary 
operation can be implemented using only the above 
projective measurements. Since an arbitrary unitary 
operation can be implemented by combining one-
qubit unitary operations with a two-qubit unitary 

operation [�], it suffices to show how to implement 
these operations.

3.1   New state transfer
A key ingredient of my procedure for implementing 

an arbitrary one-qubit unitary operation is a new state 
transfer based on the Y-measurements. Consider the 
following procedure (Fig. 3), where the initial state of 
qubit � is |j 〉 and that of qubit 2 is an arbitrary one-
qubit state.
(�) Perform the Y-measurement on qubit 2.
(2)  Perform the Z⊗Z-measurement on qubits � and 

2.
(3) Perform the Y-measurement on qubit �.
The procedure can be shown to be a state transfer, 
which transfers the input state from qubit � to qubit 2. 
It is obtained by replacing the X-measurements in the 
previous state transfer with the Y-measurements. That 
is, this is an example of the case where the Y-mea-
surements can be used in place of the X-measure-
ments.

3.2    Implementations of one-qubit and two-qubit 
unitary operations

I will deal with one-qubit unitary operations first. I 
can show that, by replacing the Z⊗Z-measurement in 
the new state transfer with the Z⊗X-measurement, 
the resulting procedure is the one for implementing 
H. An important point is that it uses only Y-measure-
ments, though the previous procedure for implement-
ing H uses the X- and Z-measurements as described 
above. This can be considered an example of the case 
where the Y-measurements can be used in place of the 
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Fig. 2.    Measurement-based quantum circuit proposed for 
state transfer [6].
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Fig. 3.   State transfer based on Y-measurements.
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X- and Z-measurements. That is, the new state trans-
fer provides an H implementation procedure that 
requires only a small set of one-qubit projective mea-
surements. By generalizing the method for trans-
forming the new state transfer into an H implementa-
tion procedure, I can obtain a procedure for imple-
menting an arbitrary one-qubit unitary operation (up 
to Pauli operations). Moreover, I can show that it 
requires only the one-qubit projective measurement 
corresponding to the axis (cosq )X+(sinq )Y for any 
q∈[0,2p).

As a two-qubit unitary operation, it suffices to deal 
with the controlled-Z operation LZ that maps |0〉|0〉, 
|0〉|�〉, |�〉|0〉, and |�〉|�〉 to |0〉|0〉, |0〉|�〉, |�〉|0〉, and 
−|�〉|�〉, respectively. The remaining problem is to 
obtain a procedure for implementing LZ (up to Pauli 
operations) using only the one-qubit projective mea-
surement corresponding to the axis (cosq )X+(sinq )Y 
for any q∈[0,2p). Though it is difficult to implement 
LZ directly, I can show that there is a two-qubit uni-
tary operation similar to LZ such that combining it 
with one-qubit unitary operations implements an 
arbitrary unitary operation and that it can be imple-
mented by using only Y-measurements. Thus, the set 
consisting of the one-qubit projective measurement 
corresponding to the axis (cosq )X+(sinq )Y for any 
q∈[0,2p) is sufficient for universal quantum compu-
tation.

4.   Conclusions and future work

I examined the problem of minimizing the resourc-
es required for universality in measurement-only 
quantum computation and described a small set of 

projective measurements sufficient for universal 
quantum computation. A key ingredient of my proce-
dures is state transfer based on the Y-measurements. 
It would be interesting to consider approximate uni-
versality in measurement-only quantum computation 
[�0] because a small approximately universal set of 
projective measurements is particularly important in 
practice. Moreover, it would be interesting to investi-
gate the resources required for other important prob-
lems, such as graph state preparation [9].
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