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1.   Introduction

Digital coherent optical transmission technology is 
a key technology that can greatly improve the trans-
mission performance of optical fiber by incorporating 
ultrahigh-speed digital signal processing (DSP) into 
optical communications. In the Optical Transport 
Network (OTN), various client signals such as those 
of 40G and �00G Ethernet (40GbE and �00GbE; G 
denotes Gbit/s) are accommodated in an ultrahigh-
speed optical channel at the line rate of ��2 Gbit/s per 
wavelength. As a result, highly reliable long-distance 
high-capacity transmission is achieved.

2.   High-capacity optical networks based on 
ultrahigh-speed channel transmission technology

In the future OTN, �0-Tbit/s-class optical networks 
will be achieved using �00G optical channels with a 
frequency spacing of 50 GHz [�] (Fig. 1). Further-
more, by using optical switches having multidegree 
reconfigurable optical add/drop multiplexers (ROAD-
Ms) in intermediate optical nodes, it is possible to 
enhance the scalability of optical networks signifi-
cantly. In 2006, we successfully conducted a �4-Tbit/s 
wavelength division multiplexing (WDM) transmis-
sion experiment that demonstrated for the first time 
the feasibility of a �0-Tbit/s-class OTN, in which 

�00-Gbit/s-class optical channels can transparently 
transport �00GE signals. We used polarization-divi-
sion-multiplexed return-to-zero differential-quadra-
ture-phase-shift-keying direct detection (PDM-RZ-
DQPSK-DD) systems [2]. In order to achieve highly 
reliable �00-Gbit/s-channel-based high-capacity sys-
tems having backward compatibility with existing 
systems, the following technological issues must be 
resolved.

-  Improve the signal-to-noise ratio (SNR) and 
spectral efficiency (SE) 

-  Improve chromatic dispersion (CD) tolerance 
and polarization mode dispersion (PMD) toler-
ance

-  Improve the tolerance to spectral filtering 
induced by the optical nodes

- Improve optical fiber nonlinear tolerance
For increased transmission capacity, multilevel 

modulation formats are attractive for enhancing the 
SE, the same as in wireless communications. How-
ever, when considering a multilevel format with the 
number of levels m equal to or higher than 4, as 
shown in Fig. 2, we must increase the total system 
SNR to achieve the same regenerative repeater spac-
ing. This is because the required SNR of a higher-
level multilevel format (m>4) is higher than that of 
QPSK (m=4). For this purpose, it is promising to 
combine new multiplexing/demultiplexing schemes 
such as PDM and OFDM (orthogonal frequency divi-
sion multiplexing) with a multilevel format to 
enhance both the SNR and SE simultaneously.
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3.   Digital coherent optical transmission  
technology: overview and advantages

Introducing digital signal processing to optical 
communications provides three main advantages.
(�)  Coherent detection enables a high-sensitivity 

receiver that utilizes the frequency and phase of 
an optical carrier signal. Long-haul transmis-
sion can be achieved, since a 3-dB improvement 
in the SNR can be achieved compared with con-
ventional intensity modulation direct detection.

(2)  Powerful digital equalization of the linear wave-

form distortion caused by CD and PMD has 
been achieved by using DSP; such strong equal-
ization cannot be used in conventional receivers. 
This feature greatly simplifies the operation and 
configuration of optical amplifier repeater sys-
tems.

(3)  DSP-aided highly reliable PDM can be intro-
duced into high-capacity optical transmission 
systems, and the SE can be improved by more 
than two fold compared with conventional sys-
tems.

The relationship between the optical signal trans-
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Fig. 2.   Tradeoff for multilevel coding.
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mission speed and the transmission distance limited 
by CD and PMD is shown in Fig. 3. The CD limit is 
caused by waveform distortion originating from the 
group velocity dispersion of the optical frequency, 
and the achievable transmission distance decreases in 
inverse proportion to the square of the data bitrate. 
For example, as shown in Fig. 3(a), in the case of the 
typical binary non-return-to-zero (NRZ) intensity 
modulation format, the transmission distance is lim-
ited to less than �0 km at a data rate of �00 Gbit/s. 
PMD is closely related to the birefringence caused by 
the anisotropy of the core diameter during the manu-
facturing process and the stress imposed during the 
installation and operation of fiber cables. There are 
two independent states of signal polarization in the 
fiber in the presence of PMD. Their signal propaga-
tion delays (differential group delays (DGDs)) are 
slightly different from each other and they vary with 
time. Therefore, owing to the fluctuation of the inci-
dent signal polarization and DGD, the waveform 
distortion has dynamic characteristics. Such dynamic 
waveform distortion is dominant at transmission 
speeds higher than 40 Gbit/s. To mitigate these issues, 
RZ-DQPSK-DD was used in a 40-Gbit/s-channel 
WDM system, where the PMD tolerance was 
enhanced and the SE was improved to 0.4 bit/s/Hz 
compared with that for binary code. A �.6-Tbit/s-per-
fiber transmission system with a regenerative repeater 
spacing of more than 500 km has been implemented 
[3].

At data rates over �00 Gbit/s, however, the PMD-

limited transmission distance is less than �00 km, 
even if RZ-DQPSK-DD is used, as shown in Fig. 
3(b). As a promising candidate for overcoming this 
limitation, DSP-aided coherent detection systems 
(i.e., digital coherent systems) have recently attracted 
much attention. Digital coherent systems fully utilize 
previously unused properties of the optical signal, 
such as phase, frequency, and polarization. By adap-
tively mitigating waveform distortions caused by CD 
and PMD, a regenerative repeater spacing of greater 
than �000 km is expected in long-distance transmis-
sion with capacities higher than �0 Tbit/s per fiber 
core.

The basic configuration is shown in Fig. 4. In the 
coherent optical communications scheme, wireless 
homodyne detection*� and heterodyne detection*2 are 
performed similarly, and a local oscillator (LO) is 
provided in the receiver. The received optical signal 
and its beat signal are converted into baseband or 
intermediate-frequency-band electrical signals and 
the received equalized waveform is regenerated. 
Since these detection schemes enable highly sensitive 
detection and large CD/PMD compensation in an 

1000

100

10

1
10 20 40 100

(a)

Transmission speed (Gbit/s)

DSF: dispersion-shifted fiber
SMF: single-mode fiber

NRZ format
Target area

DSF

10000

1000

100

10
10 20 40 100

(b)

Transmission speed (Gbit/s)

Target area

DQPSK

DQPSK

SMFC
D

 d
is

ta
nc

e 
lim

ita
tio

n 
(k

m
)

P
M

D
 d

is
ta

nc
e 

lim
ita

tio
n 

(k
m

)

NRZ, DPSK

Fig. 3.   Digital coherent technology based on mitigating the CD and PMD transmission distance limitations.

*� Homodyne detection: A high-sensitivity coherent detection 
scheme based on using the interference generated when the opti-
cal carrier wave frequency and local light frequency are equal.

*2 Heterodyne detection: A high-sensitivity coherent detection 
scheme that allows the signal light to interfere with local light of 
a different optical frequency from the signal light and then con-
verts the optical signal and its beat signal into intermediate-fre-
quency-band electrical signals.
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electrical intermediate frequency band, these tech-
nologies were actively investigated up to approximately 
twenty years ago. However, at that time, there were 
significant issues with the conventional coherent 
optical communications systems: (�) the physical 
synchronization of the frequency and phase between 
the received signal and LO light and (2) the polari-
zation tracking at the optical level. The introduction 
of a digital signal processor (DSP) at the coherent 
receiver enables high-speed electrical synchroniza-
tion between the receiver signal and the LO, so high-
speed polarization tracking can be performed in real 
time in the digital domain. Since the adaptive digital 
filter in the DSP compensates for the dynamic wave-
form distortion due to CD and PMD through the opti-
cal fiber, we can greatly improve the distance limit in 
ultrahigh-speed signal transmission at a data rate of 
�00 Gbit/s.

4.   Component technologies for  
digital coherent optical transmission

One critical issue in achieving the abovementioned 
digital coherent transmission is achieving DSP with 
high-speed analog-to-digital (A/D) and digital-to-
analog conversion. Let us consider the PDM-QPSK 
format as an example for a ��2-Gbit/s digital coher-
ent system. The ��2-Gbit/s PDM-QPSK signal con-
sists of two polarization components, on the X and Y 
axes, and each polarization signal is independently 
modulated by 56-Gbit/s QPSK by using a nested 
Mach-Zehnder modulator (MZM). As a result, the 
symbol rate is 28 Gsymbol/s. 

At the transmitter, the signal is transmitted as a 
QPSK optical signal, which uses the same modulator 
configuration as in the DQPSK-DD system. Indepen-
dently modulated 56-Gbit/s QPSK signals are polar-
ization multiplexed using a polarization beam 
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Fig. 4.   Configuration example of digital coherent optical transmission technology using repeater configuration.
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combiner (PBC) to form a ��2-Gbit/s PDM-QPSK 
optical signal. In optical fiber transmission, the polar-
ization states are not maintained after transmission 
because of temperature changes in the fiber cable and 
physical contact with the fiber by an operator. 

At the receiver, the PDM QPSK signal is separated 
into X' and Y' polarization components at the polar-
ization beam splitter (PBS). These signals pass 
through a 90° optical hybrid and differently polarized 
signals are separated into in-phase and quadrature-
phase components by coupling them with the LO 
signal, for each polarization axis (X', Y'). A/D con-
verters convert the ��2-Gbit/s received signal into  
4-lane 28-Gsymbol/s electrical digital signals. In the 
DSP part, after synchronization between the received 
signal light and the LO signal, CD compensation, 
polarization demultiplexing, PMD compensation, 
and carrier phase recovery are conducted to demodu-
late the original ��2-Gbit/s PDM-QPSK signal in the 
digital domain.

DSP throughput greater than �.3 Tbit/s is required 
for ��2-Gbit/s digital coherent systems (e.g., for each 
lane with a 28-Gsymbol/s received waveform, six 
quantizing bits, and a sampling rate of 2 samples/
symbol, the throughput per lane is 336 Gbit/s; thus, 
for all four lanes, �.344-Tbit/s digital signal process-

ing is required). In recent years, several developments 
have advanced realtime DSP technology, leading to 
innovations in �00-Gbit/s class transmission perfor-
mance and we anticipate further progress in the 
future. We will accelerate our research efforts for 
realtime digital coherent optical transmission tech-
nology; the key concept of the DSP architecture has 
been studied under the Universal Link Project sup-
ported by the National Institute of Information and 
Communication Technology (NICT) of Japan [4]. 
Proof-of-concept studies for �00-Gbit/s-class digital 
signal processing are also being conducted in a proj-
ect supported by the Ministry of Internal Affairs and 
Communications of Japan [5].

5.   Field trials of 100-Gbit/s  
digital coherent scheme

To confirm the feasibility of this scheme, we con-
ducted a 8-Tbit/s field experiment using 80 × �00-
Gbit/s DWDM (dense WDM) test signals over an 
installed dispersion shifted fiber (DSF) [6].

The experimental setup is shown in Fig. 5. In this 
experiment, the line rate was set to �27 Gbit/s to 
improve the optical SNR by introducing strong for-
ward error correction (Ultra FEC (UFEC)) with 20% 
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Vol. 9 No. 8 Aug. 2011 6

Feature Articles

redundancy. An 8-Tbit/s test signal was generated to 
wavelength-division-multiplex 80 channels of �27-
Gbit/s PDM-QPSK signals with a 50-GHz spacing. A 
polarization scrambler and a DGD emulator were 
arranged at the transmitter output to simulate various 
polarization conditions and PMD.

The transmission line used in the experiment com-
prises an 8.8-km �00-core slotted-core DSF cable 
with dozens of connectors constructed between NTT 
Yokosuka R&D Center and NTT EAST’s Yokosuka 
office. The test wavelengths were from �570.4 nm to 
�603.6 nm in the L band. The 457.6-km line with L-
band erbium-doped fiber amplifier (EDFA) inline 
repeaters has four spans of 70.4 km and two spans of 
88.0 km. Its CD coefficient ranged from �.4 to 4.2 
ps/nm/km, the PMD coefficient was less than 0.2 ps/
km0.5, and the loss in each span ranged from 24.3 to 
28.5 dB.

A tunable wavelength light source with a line width 
of �00 kHz was used as an LO in the digital coherent 
receiver. For digital signal processing, offline pro-
cessing was performed using a computer and a real-
time oscilloscope. The CD and PMD in the transmis-
sion line were completely compensated for by digital 
signal processing in the receiver, and inline disper-
sion compensation at each optical amplification 
repeater was not used. 

The 8-Tbit/s (�27 Gbit/s × 80 channels) WDM 
spectra and the error rate for all channels (Q factor) 
after 457.6-km transmission are shown in Fig. 5. For 
all the channels, Q factors of more than 8.5 dB were 
obtained; that is, they were all above the UFEC limit 
of 6.4 dB. Thus, we confirmed the feasibility of trans-

mitting a stable 8-Tbit/s signal over an installed 
DSF.

6.   Challenges toward achieving  
higher capacities

We investigated the feasibility of much higher 
capacities with higher SE of more than 2 bit/s/Hz by 
using enhanced DSP based on higher-order multi-
level quadrature amplitude modulation (QAM) for-
mats. We successfully achieved 69-Tbit/s DWDM 
transmission over a distance of 240 km by using �7�-
Gbit/s PDM-�6QAM [7]. This advanced DSP scheme 
enhances the phase noise tolerance required in order 
to use PDM-�6QAM. The test results are shown in 
Fig. 6. In this experiment, we used hybrid EDFA/
Raman optical amplification in three 80-km spans of 
ultralow pure-silica core fiber with fiber loss of 0.�6 
dB/km. As a result, we achieved low-noise signal 
transmission with bandwidth of more than �0.8 THz 
covering the C band (�527.22–�562.03 nm) and an 
expanded L band (�565.9�–�6�9.84 nm) that com-
pensated for the reduction in optical SNR tolerance 
caused by using the �6QAM format. The redundancy 
of the enhanced FEC (E-FEC) was 7%. As a result, 
we successfully achieved ultrahigh-capacity trans-
mission of more than �0 Tbit/s with a high SE of 6.4 
bit/s/Hz.

7.   Summary

In this article, we introduced the latest technical 
trends in ultrahigh-capacity digital coherent 
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transmission technologies for future optical transport 
networks that support broadband network evolution. 
We will continue research and development of a prac-
tical �0-Tbit/s-class OTN.
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