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1.   Introduction

Photonics has played a key role in the progress of 
long-haul network links. On the other hand, although 
data processing at nodes or routers is still performed 
with integrated electronic circuits, their increasing 
power consumption and heat generation during high-
bitrate operation is now becoming an obstacle to 
further improvements in network speed and traffic 
capacity. All-optical data processing with integrated 
photonic circuits is therefore expected to reduce the 
amount of power consumed by their electronic coun-
terparts while keeping the high-speed properties of 
optical signals [1]. However, current photonic pro-
cessing devices generally require a very high driving 
energy and are too big for integration, though future 
interconnect technology will demand micrometer-
scale optical components in a chip consuming less 
than a femtojoule per bit [2]. These problems arise 
from the difficulty of confining light in a small vol-
ume and the weakness of light-matter interactions. 

Photonic crystal (PhC) cavities, which exhibit a 
high cavity quality factor (Q) and an ultrasmall modal 
volume (V), are promising candidates as platforms on 
which to construct devices with dimensions on the 
order of a few wavelengths of light in matter. Since 
optical nonlinearities can be greatly enhanced in 
high-Q, small-V cavities (the optical-field intensity is 
enhanced in proportion to Q/V), very low operating 
energy/power can be expected if we apply them to 
various functional devices. The all-optical switch, 
which enables gating of an optical signal, should be 
one of the fundamental elements for constructing 
photonic circuits [3]–[6], and it is a straightforward 
example of light-matter interaction enhancement by 
nanocavities [7]–[9]. 

A PhC nanocavity is schematically illustrated in 
Fig. 1(a). A two-dimensional array of airholes is pat-
terned into a semiconductor thin plate having a thick-
ness of ~200 nm. A line defect and a point defect in 
the array can act as an input/output waveguide and a 
nanocavity, respectively. The PhC nanocavity can 
strongly confine light, thereby achieving a strong 
light-matter interaction and optical nonlinear func-
tionalities [10], [11]. The operating principle of 
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all-optical switching is shown in Fig. 1(b). The pump 
and signal light pulses are injected into the waveguide 
simultaneously. The pump light generates carriers in 
the nanocavity and induces a wavelength shift in the 
resonant transmission spectrum, which makes it pos-
sible to control the signal light output. 

This article clarifies the design principle for a PhC-
nanocavity-based switch, namely, what type of cavity, 
nonlinearity, and material we should use. Devices 
based on our designs exhibit all-optical switching 
with operating energy in the attojoule range and a 
time window of a few tens of picoseconds. Our results 
clearly show that PhC nanocavities enable unprece-
dented all-optical switches that may lead to high-
speed, low-power information processing on a chip.

2.   Design

2.1   Smallest PhC cavity
Although we said that a high Q/V ratio is preferable 

for a lower switching energy, that is a bit too simple. 
In practice, we need to choose an appropriate Q 

according to the target operating speed because the 
photon lifetime in a cavity is proportional to Q. In 
contrast, cavity volume V should always be as small 
as possible. In this study, we used a lattice-shifted 
cavity (hereinafter referred to as an H0 cavity) [12]. 
The cavity mode consists of only two primary anti-
nodes (Fig. 2(a)). Importantly, the H0 cavity has the 
smallest V among dielectric-core PhC cavities. In our 
simulation, V was calculated to be only 0.025 mm3. 

Another limiting factor for operating speed is the 
carrier relaxation time (tc). Generally, tc is as long as 
the nanosecond order, but PhC nanocavities offer an 
efficient way to reduce it. When the cavity becomes 
ultrasmall, the photogenerated carriers rapidly dif-
fuse out from the cavity, and tc becomes small [13]. 
We numerically solved the carrier diffusion dynamics 
in a PhC nanocavity. First, we investigated the carrier 
dynamics without a cavity but assuming an initial 
Gaussian carrier distribution centered at a certain 
point in a defect-free PhC lattice. In Fig. 2(a), four 
black lines show the decay for different initial distri-
bution sizes. They clearly show that a small excitation 
leads to surprisingly fast diffusion. We investigated 
more realistic cases with an H0 cavity, as shown by 
the red line. The fitted tc values are as short as 3.5 ps. 
The time evolution of the carrier distribution for the 
H0 cavity is shown in Fig. 2(b). The carriers are ini-
tially localized in the cavity mode and then start to 
spread out. This result implies that we can expect a 
switching bandwidth of nearly 100 GHz. Conse-
quently, it shows that an H0 cavity switch is promising 
in terms of high-speed response.
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Fig. 1.   �All-optical switch based on photonic crystal nanocavity. 
(a) Structural schematic of PhC-nanocavity switch 
formed in semiconductor (InGaAsP) slab. (b) Operating 
principle of all-optical switching. Switch-on or switch-
off operation is selected by the initial setting of the 
signal wavelength.
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Fig. 2.   �Simulation results for carrier decay (a) Simulated 
carrier decay for an H0 cavity (red) and cavity-free 
PhCs (black). The Gaussian carrier distribution with 
different spatial widths is set for the cavity-free 
PhCs. (b) Time evolution of the carrier density 
distribution for H0 cavity. 
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2.2   Material optimization
To obtain lower switching energy, we want the 

pump light to be efficiently absorbed in the cavity and 
the subsequent refractive-index change to be large. 
InGaAsP is one compound semiconductor that exhib-
its these features effectively compared with other 
materials such as Si and GaAs at a wavelength of 1.55 
mm. 

Figure 3(a) shows the calculated index change and 
the linear absorption lifetime as a function of the inci-
dent wavelength detuning from the bandgap wave-
length lin – lg. In our switch, all-optical switching 
relies on band-filling dispersion (BFD) and free-car-
rier dispersion in InGaAsP to obtain a refractive 
index change [14]. Since BFD depends strongly on 
the position of the electronic band-edge wavelength, 
we need to find an appropriate InGaAsP composition 
to suit the cavity’s resonant wavelength. On the other 
hand, optical absorption relies on linear absorption 
(LA) and nonlinear two-photon absorption (TPA). 
LA also becomes stronger in the vicinity of the band-
edge wavelength and allows efficient absorption. The 
important point is that excess absorption induces a 

degradation of cavity Q and increase in switching 
power, so appropriate adjustment of the composition 
is needed in order to minimize the switching energy. 

The calculated switching energy Usw for the H0 
nanocavity is shown in Fig. 3(b). In the vicinity of the 
band edge, LA boosts the absorption efficiency and 
BFD enhances the nonlinear resonance shift, thereby 
effectively reducing Usw. This results in a minimum 
value of less than 1 fJ at around lin – lg = 0.05 to 0.1 
mm. We adjusted the InGaAsP composition to set the 
photoluminescence peak to 1.47 mm for an operating 
wavelength of around 1.55 µm.

3.   Switching demonstration

3.1   Fabricated H0 nanocavity
We fabricated H0-PhC cavities in an InGaAsP slab 

using standard top-down processes, including elec-
tron-beam lithography and Cl2-based dry etching. A 
top-view image of the device is shown in Fig. 4(a). 
The air-hole diameter, lattice period, and slab thick-
ness are 230, 460, and 200 nm, respectively. The H0 
cavity, which was formed by shifting two neighbor-
ing air holes by 85 nm in opposite directions, is cou-
pled with input and output PhC waveguides. The 
transmission spectrum acquired by scanning a wave-
length of continuous-wave light is shown in Fig. 4(b). 
The periodic peaks in the spectrum are not a nanocav-
ity mode, but appear as a result of interference with 
the Fabry-Pérot resonance caused by the facet end of 
the waveguide. The fitting curve (black) clarifies the 
nanocavity mode, indicating that the resonant wave-
length lcav and linewidth are 1567.8 nm and 0.24 nm, 
respectively. The cavity Q factor is 6500 and the cor-
responding photon lifetime is tph = 5.4 ps, which is 
slightly longer than the calculated carrier relaxation 
time of 3.5 ps and is thus unlikely to restrict the 
switching recovery time.

3.2   Pump-probe measurement
To measure the switching dynamics, we used a 

degenerate pump-probe technique with an optical 
pulse width of 14 ps [7], [15]. The center wavelength 
of the pump pulse was always set to the resonance 
wavelength, while the wavelength of the probe pulse 
lprobe was set with detuning Dldet = lprobe – lcav. 
Switching dynamics for different values of Dldet are 
shown in Fig. 4(c). For Dldet = 0.0 nm, the transmis-
sion of the probe pulse was abruptly switched off 
when the pump pulse temporally overlapped the 
probe pulse. On the other hand, the probe transmission 
was switched on for Dldet = –0.3 nm and –0.6 nm 
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Fig. 3.   �Material optimization for minimizing switching 
energy. (a), Index change with carrier density (left 
axis) and linear absorption lifetime (right axis) as a 
function of incident wavelength detuning from a 
bandgap wavelength. (b) Calculated switching 
energy for parameters of InGaAsP-based H0 
cavity.
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because pump-induced carrier nonlinearity induced a 
resonant blueshift. Switching energies of 420 and 660 
aJ were achieved for contrasts of 3 and 10 dB, respec-
tively. These energies are over two magnitudes lower 
than those reported for Si- and GaAs-based PhC 
cavities. It should be noted that the switching time 
window is only 20–35 ps. This value is much shorter 
than the carrier recombination lifetime (several hun-
dred picoseconds), which is attributable to the rapid 
carrier diffusion. The improvement in energy and 
speed is attributed to the ultrasmall size of the cavity 
and the strong nonlinearity of InGaAsP. 

3.3   Gate switching for 40-Gbit/s signal
We performed an experiment in which we extracted 

a pulse from a repetitive signal train to demonstrate 
the practicality of our all-optical switches. As shown 
in Fig. 5, we generated a signal train with four pulses 
with a 25-ps period (40-Gbit/s repetition). We also 
injected a pump pulse so that it temporally overlapped 
the second signal pulse to switch it selectively. Out-
put signal pulses show the result of the pulse extrac-
tion experiment; they indicate that the second pulse 
(indicated by an arrow) was selectively switched off 
or on. These results are promising in terms of the suit-
ability of PhC nanocavity switches for 40-Gbit/s 
operation. 

4.   Comparison of all-optical switches

Various all-optical switches are compared in 
Fig. 6(a) in terms of their switching energy per bit 
and switching time. It is clear that our switch can 
operate with energy approximately two or more 
orders of magnitude less than for previously reported 
ones and has entered the attojoule energy range for 
the first time. In addition, the previous all-optical 
switches suffer from a trade-off between switching 
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time and energy; that is, the energy-time product is 
limited to around 10–24–10–22. On the other hand, our 
device clearly overcomes this limitation, exhibiting 
an energy-time product of 10–26. This is attributed to 
the ultrasmall size of our cavity. On-chip all-optical 
switches are compared in Fig. 6(b) in terms of 
switching energy and device size. Our device exhibits 
both the smallest size and lowest energy. Although 
all-optical switches involving third-order nonlinearity 
[16] and inter-subband transition [5], [6] can operate 
at a much higher bitrate, their high energy consump-
tion and large size might be unacceptable for an on-
chip integrated circuit. With our device, assuming 
1000 devices on a single chip all operating at a bitrate 
of 10 Gbit/s, the power consumption is only a few 
milliwatts. In addition, the ultrasmall size of our 
device lets us integrate 1000 devices with a small 
footprint of less than 0.01 mm2 (assuming a footprint 
for a single device of less than 10 mm2). Consequent-
ly, the low-power, ultrasmall, and fast PhC-nanocav-
ity switch studied here is unique. 

5.   Conclusion

We demonstrated all-optical switching with 
extremely low power consumption using a PhC nano-
cavity. The achievement of such a densely integrable 
PhC-nanocavity switch is very important because it 
will enable low power consumption in the milliwatt 
range, even in an integrated chip including thousands 

of devices with a sub-mm2-order footprint, and it 
operates at 40 Gbit/s. A wide variety of low-power 
optical devices, such as optical bistable memory and 
logic elements [17], [18], should be achievable in a 
similar way. These PhC-nanocavity-based function-
alities are promising for use in optical processing in 
chip-scale photonic integration.
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