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1.   Introduction

In both communications and non-communications 
fields, there have been many trials for using an unex-
ploited frequency range, the terahertz range, for high-
frequency applications. Terahertz-waves (THz-
waves) are electromagnetic waves in the frequency 
range from 0.1 THz to 10 THz (Fig. 1). This fre-
quency range is positioned between radio waves and 
light waves, so the characteristics of THz-waves are 
either intermediate between them or a combination of 
their advantages. The main features of interest are 
also described in Fig. 1. 

Recently, various high-frequency applications uti-
lizing these superior features of THz-waves have 
been actively proposed and investigated. Possible 
applications include an ultrahigh-capacity wireless 
communication system, non-destructive inspection/
imaging system, spectroscopic remote sensing/analy-
sis system, and astronomical radio telescope system, 
as shown in Fig. 2. THz-waves have been enthusiasti-
cally investigated especially for systems concerning 

human safety and rescue in light of the frequent disas-
ters that have occurred in recent years.

A compact, lightweight, and easy-to-handle THz-
wave generator is a key device for such high-fre-
quency systems. The development of a generator that 
simultaneously provides high power, a wide band-
width, and frequency-sweeping capability has been 
one of the most important targets in this field.

2.   THz-wave generation using a photodiode

NTT Photonics Laboratories invented the uni-trav-
eling-carrier photodiode (UTC-PD) [1] as a key 
device for high-speed optical communication sys-
tems and has continued to investigate it to make 
improvements and develop applications. The UTC-
PD simultaneously achieves both ultrahigh speed and 
high power compared with the conventional pin-PD. 
This excellent feature is extremely suitable not only 
for a high-speed optical communication receiver but 
also for an electromagnetic-wave generator. The 
development of the THz-wave photomixer module 
was based on the same technology as used in the 
UTC-PD-based millimeter-wave photomixer module 
that we developed earlier [2]. The structures of both 
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the UTC-PD and the module were improved and opti-
mized for use in a frequency range of 0.2 THz to 0.65 
THz. At present, our module has a center frequency 
of 0.35 THz for application as the power source of a 
spectroscopic remote sensing system [3]. 

The PD-based photomixing technique is explained 

in Fig. 3. THz-waves are generated by ultrahigh-
speed optical-to-electrical (O/E) conversion in a 
UTC-PD. An optical beat-signal with a beating fre-
quency of fb (= f1 - f2) is obtained by combining two 
lights of different frequencies (f1, f2; f1>f2) in an opti-
cal coupler. For example, by using lights with 
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Fig. 1.   Frequency range and interesting features of THz-waves.
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Fig. 2.   Possible applications utilizing the features of THz-waves.
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wavelengths of 1.5000 μm (201 THz) and 1.5075 μm 
(200 THz), we can get a beat signal with a frequency 
of exactly 1 THz. The optical beat-signal that is input 
into the UTC-PD is converted into a modulated elec-
tric current with the same frequency as fb. THz-waves 
can be obtained by radiating the modulated current 
into space from a waveguide or antenna.

Details of the UTC-PD used in the photomixing 
technique are given in the next section.

3.   UTC-PD

3.1   Features 
Although the most widely used PD is the conven-

tional pin-PD, there are two limitations regarding its 
performance (pin: positive, intrinsic, negative layers). 
One concerns the maximum operating speed. When 
lights are input into the pin-PD’s absorption layer, 
electron-hole pairs, which are the electric current car-
riers, are generated (Fig. 4(a)). In a pin-PD, both 
electrons and holes contribute to its O/E-conversion 
mechanism. Because a hole’s effective mass is larger 

than an electron’s and its velocity is much lower, the 
maximum operating speed of the pin-PD is limited by 
the hole velocity. The other limitation concerns the 
maximum output current. When the optical input 
power becomes higher, the band in the undoped 
absorption layer is bent by the space charge due to 
carrier accumulation. This band bending causes a 
drastic reduction in carrier velocity, which results in 
saturation of the output current. To overcome these 
limitations of the pin-PD, we studied the UTC-PD. 

In the UTC-PD, a p-doped absorption layer is sepa-
rated from a wide-gap undoped carrier collection 
layer (Fig. 4(b)), which is in clear contrast to the pin-
PD. This structure means that only electrons are the 
active carriers running through the depleted undoped 
carrier collection layer. Most of the photogenerated 
holes relax extremely quickly into the absorption 
layer where holes are the major carrier. Consequently, 
the maximum operating speed of the UTC-PD is 
determined only by the electron velocity, which is 
much higher than the hole velocity. The space charge 
effect is also much smaller than in the pin-PD because 

fb = f1-f2
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Fig. 3.   PD-based photomixing technique.
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carrier accumulation is extremely small in principle 
compared with the pin-PD. For these reasons, the 
UTC-PD can exhibit high performance, that is, ultra-
high-speed and high saturation output current simul-
taneously.

We have achieved a 3-dB-down bandwidth of 310 
GHz and a 10-dB-down bandwidth of 750 GHz as the 
operational frequency bandwidth [4]. We have also 
obtained a maximum output current of 30 mA for 
high optical input power.

3.2�   Optimization for THz-wave photomixer mod-
ule

It is essential to optimize the UTC-PD’s band struc-
ture in order to obtain an output current with a tera-
hertz frequency. We designed a thinner absorption 
layer than the one in the UTC-PD for the previous 
millimeter-wave photomixer; this reduced the UTC-
PD’s carrier transit time when it operates at higher 
frequencies. The thicknesses and materials of the 
other layers were also optimized for compatibility 
with the thin absorption layer.

Besides the band structure, we also improved the 
physical structure of the UTC-PC chip. The fabricat-
ed UTC-PD chip designed to operate in the terahertz 
frequency range is shown in Fig. 5. The chip is 300 × 
450 μm2.

The frequency response of the PD output current 
shows a generally broadband-shape caused by the 
resistor-capacitor time constant. The response 
decreases with increasing operating frequency. For 
the THz-wave photomixer, a stub-line was integrated 
on the chip to increase the output current. It acts as a 
resonant circuit for the UTC-PD to compensate for 
the roll-off of the frequency response. The output 

power of the THz-waves is designed to be as high as 
possible at around the designed center frequency. In 
this development, the center frequency was set to 
0.35 THz. The output current is expected to increase 
at around the center frequency through use of the 
resonant effect. We measured the pulse photores-
ponse to evaluate the chip’s resonant design. From 
the measured pulse waveform oscillating at about 
0.35 THz, we ascertained that the stub-line acted 
properly as a resonant circuit.

4.   Waveguide-output-type photomixer module

4.1   Optimization
For practical use, in addition to being high-perfor-

mance, the photomixer module is required to be com-
pact, lightweight, and easy to handle. Moreover, since 
the module will be applied to various high-frequency 
systems, it should be easy to assemble on a board or 
in a package. As a result of our investigation, we 
determined that a butterfly-package would be an 
excellent form for the module. It is a generic package 
with a good track record for many optical devices, so 
it is cheap and readily available.

For the module structure investigation, there are 
two main issues: they concern optical implementa-
tion and electrical implementation. The former cov-
ers how efficiently light is input to the UTC-PD, and 
the latter covers how efficiently ultrahigh-frequency 
current from the UTC-PD is converted into THz-
waves.

Today’s high-frequency coaxial connectors have 
pronounced propagation loss for current with a fre-
quency range above 0.1 THz, so it is essential to 
chose either the waveguide technique or direct 

450 µm

Bias pad

Stub-line

UTC-PDCPW

Signal
pad

Signal
pad

GND pad

CPW: coplanar waveguide
GND: ground

GND pad

30
0 

µm

Fig. 5.   Photograph of the fabricated UTC-PD chip.
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radiation technique (quasi-optical technique) to out-
put the current from the module. We developed a 
waveguide-based module structure during our devel-
opment of the previous millimeter-wave photomixer 
module and confirmed its excellent characteristics. 
The THz-wave photomixer module is based on an 
extension of that technique.

The cross-section of the internal structure is sche-
matically shown in Fig. 6. The optical part consists of 
an optical fiber and collimation lenses. The collima-
tion lens system has good versatility for an optical 
design, and it also has excellent optical alignment 
stability among the optical fiber, lenses, and UTC-
PD. The UTC-PD chip is mounted on a metal block 
with a rectangular waveguide whose aperture size is 
0.864 mm × 0.432 mm. The UTC-PD chip and the 
waveguide are connected by a quartz coupler consist-
ing of an impedance converter, a micro-strip line, and 
a radiator. The module is made by assembling these 
components in the butterfly-package with the same 
waveguide.

The design of the quartz coupler is extremely 
important for high emission efficiency of the ultra-
high-frequency current as THz-waves into the wave-
guide. The design policies were as follows: 
(1)	 Reflection power as low as possible
(2)	 Transmission power as high as possible
(3)	� Propagation of higher-order modes in the 

waveguide suppressed as much as possible from 
the UTC-PD’s current output point to the wave-
guide’s THz-wave output point. 

The quartz coupler was designed using a three-
dimensional electromagnetic wave simulator to 
obtain flattened characteristics from 0.2 THz to 0.65 

THz. As a result of simulation for various designs, the 
optimized one achieved reflection power of less than 
-30 dB and transmission power loss of less than 3 
dB.

4.2   Performance
We fabricated a THz-wave photomixer module 

(Fig. 7) with the optimized design described in the 
previous section. The module is 3 × 1.65 × 1 cm3.

The output power dependence on frequency when 
the optical beat signal’s frequency was swept from 
0.2 THz to 0.65 THz is shown in Fig. 8. The output 
power was clearly enhanced at around 0.35 THz 
(designed center frequency of the stub-line) with the 
maximum value being over 0.5 mW [5]. This is the 
highest value ever reported for a photomixer with a 
single PD operating in this frequency range. The 3- 
and 10-dB-down bandwidths were as wide as 120 and 
260 GHz, respectively, showing extremely wideband 
performance.

The main feature of this module is that it simultane-
ously achieves both high-output power and extremely 
wide bandwidth. In addition to this high performance, 
it is very easy to use because it operates in continu-
ous-wave operation at room temperature without any 
cooling.

5.   Quasi-optical photomixer module

For diversification of the THz-wave output method, 
we have been also investigating a quasi-optical pho-
tomixer module (Fig. 9). The THz-wave generation 
principle is the same as for the waveguide-output-
type module. The quasi-optical module consists of a 
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Fig. 6.   Schematic cross-section of the module’s internal structure.
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UTC-PD chip integrated with an antenna and a metal 
package with a silicon lens for collimating the radi-
ated THz-waves.

In the waveguide-output-type module, as the opera-
tion frequency becomes higher, the waveguide’s 
aperture must become smaller. Therefore, in the tera-
hertz range, it becomes difficult to fabricate a precise 
rectangular waveguide with a small aperture by a 
metal-cutting process. The quasi-optical module is 
suitable for increasing the operating frequency 
because it does not require high-precision metal-cut-
ting. There are also some other good features:

(1)	� It is easy to make either a broadband- or reso-
nant-type module by choosing the type of inte-
grated antenna.

(2)	� It is easy to fabricate an airtight module, which 
is beneficial for module reliability because the 
module does not have an aperture.

(3)	� The electrical implementation is easy because 
that there is no quartz coupler requiring precise 
positional alignment. 

Although the maximum output power is lower than 
that of the waveguide-output-type module at present, 
we confirmed THz-wave generation up to a frequency 
of 1.5 THz [6].

5.   Conclusion

The features of the UTC-PD were described, 
including the operating principles and characteristics. 
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Fig. 7.   Photograph of the fabricated THz-wave photomixer module.
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Compared with the conventional pin-PD, the UTC-
PD has the advantages of extremely wide bandwidth 
and high power owing to its unique carrier transport 
mechanism. One application for the UTC-PD is THz-
wave generation. Our developed THz-wave photo-
mixer module using a UTC-PD, fabricated as a wave-
guide-output-type module, exhibits excellent perfor-
mance. It has a maximum output power of over 0.5 
mW at 0.35 THz and a 10-dB-down bandwidth of 260 
GHz. This maximum output power is the highest 
value ever reported for direct generation from a pho-
tomixer operating in a frequency range of 0.2 THz to 
0.65 THz. Our UTC-PD-based quasi-optical module 
generates THz-waves up to a maximum frequency of 
1.5 THz.
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