
� NTT Technical Review

1.   Introduction

In conventional semiconductor electronics, elec-
tron spins have been ignored because they are ran-
domly oriented and cancel out completely. The 
research field called semiconductor spintronics aims 
to extract spin properties in order to use them for both 
classical and quantum information technologies, 
which will achieve higher processing speeds, lower 
electrical power consumption, and higher integration 
densities than conventional charge-based devices [�]. 
Understanding the spin dynamics of electrons mov-
ing in semiconductors is one of the keys to develop-
ing spintronic technologies because it will enable 
electrical spin manipulation without external mag-
netic fields in ways that have been proposed for spin 
field-effect transistors [2], spin filters [3], and quan-
tum computers [4]. In a system lacking inversion 
symmetry, moving electrons feel effective magnetic 
fields even in the absence of real magnetic fields. This 
is caused by spin-orbit interactions (SOIs) arising 

from relativistic effects. In general, magnetic fields 
induce spin precession, which is the rotation of the 
spin angular momentum around the magnetic field. 
Because of this, moving spins precess with a fre-
quency proportional to the strength of the SOIs. So 
far, spin transport experiments using a DC-electric 
field [5] have succeeded in observing the spin preces-
sions induced by SOIs in the absence of a real mag-
netic field [6]. Surface acoustic waves (SAWs) 
applied to semiconductor quantum wells (QWs), 
which confine electrons in thin layers sandwiched 
between barrier layers made of other materials, pro-
vide another way to transport electron spins [7]–[9]. 
This method has the advantage of effectively sup-
pressing the dominant spin relaxation process caused 
by the electron-hole exchange interaction in undoped 
semiconductors [�0] owing to the spatial separation 
of electrons and holes in the type-II-like lateral poten-
tial modulation created by the SAWs [7]. As a result, 
it has become possible to transport electrons by using 
SAWs over distances of nearly �00 µm while main-
taining their spin coherence during precession around 
the effective magnetic fields caused by SOIs [8]. 

Here, we used magneto-optic Kerr rotation (KR) 
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microscopy to explore the two-dimensional (2D) 
dynamics of traveling spins under SAWs over a wide 
range of acoustic amplitudes. The present experiment 
revealed the existence of spatially anisotropic SOIs as 
well as their dependence on SAW strength. A theo-
retical analysis of the experimental results elucidated 
the mechanisms of the acoustically controllable spin 
dynamics. The phenomena will provide a new 
approach for the spin-manipulation as well as spin 
transport without the application of any magnetic 
fields or DC electric fields.

2.   Experiment

A schematic view of the sample is shown in 
Fig. 1(a). It was a 20-nm-thick undoped GaAs single 
QW with short-period GaAs/AlAs (average Al con-
tent: 30%) barriers grown by molecular-beam epitaxy 
on a (00�) semi-insulating GaAs substrate. The QW 
was located 485 nm below the surface. A 50-nm-thick 
Al film deposited on top of the sample was processed 
by electron-beam lithography into interdigital trans-
ducers (IDTs), which were designed for operation at 
a SAW wavelength of 2.55 µm and frequency of 
�.�54 GHz. Rayleigh SAWs propagate along either 
[��0] or [-��0], depending on the direction of the 
applied radio frequency (RF) signal, with a SAW 
velocity |vSAW| = 2.9 km/s. The single SAW beams 
produce moving wires, which are formed by the one-

dimensional (�D) lateral confinement of the SAW-
induced piezoelectric potential (Figs. 1(b) and (c)). 
Interference between two orthogonal SAW beams 
forms moving dots traveling along [0�0] with a veloc-
ity of √2 |vSAW| [8], as shown in Fig. �(a). 

The spin dynamics during transport was measured 
by temporally and spatially resolved KR microscopy 
using a mode-locked Ti:sapphire laser (�.5 ps, 82 
MHz, �.527 eV), as illustrated in Fig. 2. Circularly 
polarized pump pulses (average power: �.� µW) were 
focused at a fixed position on the sample. Linearly 
polarized probe pulses (0.9 µW) with a time delay 
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Fig. 1.    (a) Schematic view of the sample. (b) SAW-induced displacement of atoms in the sample’s cross section. 
Electrons are confined in a GaAs/AlGaAs QW. (c) Conduction band energy for the QW shown in (b). 
Electrons are trapped in the valleys of the modulated potential and transported by the SAWs.
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Fig. 2.    Setup for spatially resolved KR measurements.



Regular Articles

3 NTT Technical Review

relative to the pump pulses were scanned over the 
surface and the KR angle qK of their reflected light 
was measured by a balanced detection technique. The 
pump light’s polarization was modulated between 
left- and right-circular polarizations at 50.� kHz, and 
the probe light was chopped with an acousto-optic 
modulator at 52.0 kHz. The difference frequen-
cy (�.9 kHz) was used as a reference for lock-in 
detection. The full width at half maximum (FWHM) 
spot size of the normally incident probe beam was 
approximately 3 µm, whereas the waist size of the 
obliquely incident pump beam was 6 µm and its spot 
on the sample was slightly elongated in the [�00] 
direction. The position of the probe light spot was 
scanned in the QW plane for spatially resolved KR 
measurements. For the 2D mapping of steady-state 
spin distributions, we chose to use a two-color pump-
probe method using a pair of continuous-wave Ti:
sapphire lasers. All the measurements were carried 
out at a low temperature (30 K), where long-distance 
spin transport is expected [7], [8] in the absence of 
applied magnetic fields.

3.   Results and discussion

The spatiotemporal evolution of photoinjected 
spins trapped in moving dots traveling in the [0�0] 
direction is shown in Fig. 3. The slope of the KR sig-
nal indicates that the spin-polarized electrons moved 
with the expected velocity of √2 |vSAW| = 4.�4 km/s. 
The oscillations with a period of about 4.5 ns are 
attributed to spin precession around the spin-orbit 
effective magnetic field, as shown in the inset. The 
data thus clearly demonstrate that our method suc-
cessfully extracted information about the spin 
dynamics, including spin transport and SOI-induced 
spin precession.

Spatial maps of steady-state spin densities for mov-
ing wires are shown in Figs. 4(a) and (c) and that for 
moving dots is shown in Fig. 4(b). In the two-color 
measurement, the pump energy was fixed at �.527 eV, 
whereas the probe energy was tuned to �.525, �.526, 
and �.528 eV for [-��0], [0�0], and [��0], respectively, 
because the bandgap energies at the electron-trapping 
positions were modulated by SAW fields [��]. The 
pump (probe) power was 20 (0.9) µW. In contrast to 
the well-confined carrier transport achieved by mov-
ing dots (Fig. 4(b)), carriers in moving wires diffused 
rapidly along the wire axis (Figs. 4(a) and (c)). 
Although the KR signal for the wires was reduced by 
the carrier diffusion, we could access the momentum 
direction dependences of spin precessions (Fig. 4(d)), 

where the sum of the mapping data (Figs. 4(a)–(c)) 
shows that the isophase lines have clear elliptical 
shapes. In Fig. 4(e), the KR angles qK (open circles) 
along particular axes ([��0], [0�0], and [

-
��0]) are fit-

ted with a function qK(d)=q0 cos(2pkd) exp(–d/Ls), 
where d is the pump-probe distance and Ls and k are 
fitting parameters representing the spin decay length 
and spatial precession frequency, respectively. We 
obtained k[��0] = 0.0589 ± 0.0008, k[0�0] = 0.05369 ± 
0.00009, and k[

-
��0] = 0.0460 ± 0.0006 µm–� for the 

traveling directions [��0], [0�0], and [-��0], respec-
tively. Since k is proportional to the spin-orbit effec-
tive magnetic field, these results demonstrate that the 
SOIs are spatially anisotropic in the present system.

The SOI dependence on the traveling direction is 
caused by the coexistence of different types of SOIs 
[6], [�2]–[�4]. For electrons confined in (00�) QWs, 
the momentum-dependent effective magnetic field 
Wso(k)is primarily determined by k-linear terms, 
which are classified into two types [�5]:
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where we used a coordinate system with base vectors 
X̂ // [�00], Ŷ // [0�0], and Ẑ // [00�]. The orientation 
dependences of Wa(k) and Wβ(k) in k space are 
shown in Fig. 5. Since these vectors have different 
dependences on the direction of k, their coexistence 
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Fig. 3.    Spatiotemporal evolution of the KR signal for 
moving dots traveling along [010]. The dashed line 
shows the slope determined from the estimated 
velocity of the moving dots. The inset shows the 
motion of the spin precessing around the effective 
magnetic field during transport.
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leads to twofold symmetry of |Wtotal(k)|=|Wa(k)+ 
Wβ(k)|, as illustrated in Fig. 5. In general, Wa(k) and 
Wβ(k) are mainly induced by the structural inversion 

asymmetry caused by a static electric field (Rashba 
SOI [�6]) and the intrinsic bulk inversion asymmetry 
(Dresselhaus SOI [�7]), respectively. In addition to 
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Fig. 4.    (a)–(d) 2D images of spin densities for moving wires traveling along [
-
110] (a) and [110] (c) and for moving 

dots traveling along [010] (b). The sum of the data (a)–(c) is plotted in (d), where the dashed ellipses are 
guides for the eye. (e) Kerr rotation signals along the three directions in the data (a)–(c) are plotted (black 
open circles) and the red lines are fitting curves. The dashed lines represent precession phases of p/2, (3/2)p, 
(5/2)p, ....
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these static contributions, the present system should 
have a dynamic Rashba SOI induced by the vertical 
component of the SAW piezoelectric field as well as 
strain-induced SOIs [�8]–[20].

As expected, the precession frequency varied with 
the SAW intensity, which is defined as the acoustic 
power flux per unit length along a cross-section of the 
SAW beam. The symbols in Fig. 6 represent the 
experimentally obtained precession frequency as a 

function of the SAW intensity for moving dots. We 
estimated the SAW intensities from the bandgap shift 
observed in photoluminescence spectra [2�]. As the 
SAW intensity increased, the precession frequency 
increased monotonically, suggesting that the SOI is 
acoustically controllable. The experimental data were 
well reproduced by simulating the precession fre-
quency (solid lines in Fig. 6) [22], where each SOI 
contribution to the spin precessions was estimated 
from the calculation of the Rayleigh SAW fields 
including the piezoelectric coupling [23]. This analy-
sis revealed the contributions of SAW-dependent 
Rashba and strain SOIs to the total SOI, indicating 
that the spin rotation angle can be tuned by adjusting 
the SAW intensity.

4.   Conclusion

We studied the SOIs of electrons traveling in semi-
conductor QWs by using SAW fields. The temporally 
and/or spatially resolved KR technique enabled 2D 
imaging of the traveling spins, which revealed aniso-
tropic spin precession behavior resulting from the 
coexistence of different types of SOIs. The depen-
dence of the precession frequencies on SAW intensi-
ty, which was analyzed on the basis of a theoretical 
model, indicates that the strengths of the SOIs due to 
strain and Rashba contributions can be tuned by 
adjusting the SAW intensity. Our experimental results 
will be beneficial for further investigation of acousti-
cally induced SOIs in semiconductors. They will also 
provide the versatility needed for spin manipulation 
via dynamically controlled SOIs in future spintronic 
applications such as spin transistors and quantum 
computers.
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Fig. 5.    Effective magnetic fields Wa, Wβ, and Wa + Wβ plotted as vectors 
in k space. a < 0, β > 0, and β > |a| are assumed in this figure. 
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Fig. 6.    SAW intensity dependence of precession frequency 
for moving dots. The solid line was obtained by 
calculation. The error bars for the data represent 
two standard errors of the parameters obtained 
from a least-squares fitting.
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