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1.   Introduction

With large quantities of data of various types being 
produced, distributed, and shared around the world, it 
is becoming increasingly important for businesses 
worldwide to acquire new knowledge from data such 
as people’s behaviors, system operational logs, and 
environmental information obtained through their 
business activities. This huge amount of data is 
known as big data. Much of it is unstructured data 
that is not stored in databases, and in the past it was 
too large to analyze and was therefore discarded. 
However, the analysis of big data at a low cost has 
recently been facilitated by open-source software 
systems such as Hadoop [1], which allow distributed 
computing across clusters of inexpensive commodity 
computers. This has made it possible to perform 
analysis within realistic time limits and obtain useful 
insight from the analysis.

This kind of analytical processing is based on batch 
processing in which data has been temporarily stored 

and processed as a batch. As analytical methods, it 
utilizes statistical analysis, such as summation, and 
machine learning. In addition, a machine learning 
library called Mahout running on Hadoop has been 
developed; it enables batch-type sophisticated analy-
sis of big data in a scalable manner. There is increas-
ing need for realtime capabilities, prompted by dem-
onstrations of the validity of such large-scale data 
analysis [2].

One of the technologies with realtime capabilities 
is online stream-processing. It supports push-type 
analysis methods in which analysis results are calcu-
lated incrementally as soon as data arrives without the 
data being stored in a database, instead of the conven-
tional pull-type analysis performed on a database 
after data has been stored. Representative examples 
of such online stream-processing systems are IBM 
InfoSphere Streams, Oracle CEP, StreamBase, Syb-
ase Event Stream Processor, and Truviso. Each of 
these is a commercial product with a full lineup of 
capabilities, functions, development environments, 
and operating tools. They are already in use, includ-
ing use in mission-critical areas such as finance, com-
munications, the military, and medicine. However, 
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these deployments are based on the assumption that 
scaling up requires expensive hardware and they do 
not support sophisticated analysis functions such as 
machine learning but only simple statistical func-
tions.

Therefore, for further business success, it is becom-
ing more important to enable more sophisticated and 
timely analysis of big data at a low cost. For this, the 
key challenge is to create a scalable distributed com-
puting framework across clusters of inexpensive 
commodity computers for realtime and profound ana-
lytical processing using online machine learning 
algorithms.

2.   Jubatus

To address this challenge, NTT Software Innova-
tion Center and Preferred Infrastructure Corporation 
have cooperated in the development of Jubatus [3], 
[4] since 2011. Jubatus is a distributed computing 
framework for realtime and profound analytical pro-
cessing using online machine learning algorithms, 
rather than the batch processing provided by Mahout/
Hadoop and the simple statistics processing provided 
by online stream-processing systems. It has scale-up 
capability whereby the performance of the system 
increases linearly with the addition of inexpensive 
commodity computers.

To achieve this scalability, Jubatus must distribute 
online machine learning processing among many 
computers and synchronize their learning results. An 
iterative parameter mixture [5], [6] has been found to 
be effective as an algorithm for the synchronization 
of this distributed processing [7]. Jubatus has been 
modified to use this algorithm to achieve realtime 
processing.

Among various types of online stream-processing, 
two types of machine learning—linear classification 
and linear regression—were initially implemented 
for Jubatus because they are basic analytical func-
tions and have a much broader range of applications. 
To support these types of machine learning, Jubatus 
is aimed at stateful stream-processing, where the sta-
tus of a stream-processing node can be updated in 
accordance with the content of arriving data. To 
enable application programs to be developed more 
efficiently, Jubatus supports a full range of feature 
conversion functions that facilitate the conversion of 
unstructured data into a format that can be used in 
machine learning [8]. 

2.1   Current position and roadmap
Jubatus is intended to be a framework for realtime 

analytical processing. However, the initial version 
applies only a few online machine learning algo-
rithms, such as linear classification and regression 
algorithms, to the distributed computing environment 
by using an iterative parameter mixture, so it is not 
yet ready to be provided as a full-range framework. 
This is because, although machine learning is gener-
ally taken to be a problem of numerical optimization, 
it is not obvious how to design generic forms that will 
enable distributed processing, in other words, frame-
works.

In the future, the challenge of designing a suitable 
framework will be to extract generic calculation mod-
els in a similar way to MapReduce by applying more 
machine learning algorithms and prototyping appli-
cations aimed at real-life tasks.

2.2   Distributed processing
2.2.1   Overview

Jubatus basically achieves realtime analysis of a 
huge amount of data that cannot be processed by a 
single server by distributing the data over multiple 
servers. In machine learning, there are two types of 
processing: training and prediction. In the training 
process, the model data is updated by a machine 
learning algorithm such as a passive-aggressive (PA) 
algorithm using supervised data. In the prediction 
process, data that a server has received is processed 
using the model data and this enables the prediction 
to be performed. For example, in the case of classifi-
cation algorithms, the input data is predictively clas-
sified into several specified groups on the basis of the 
model data.

In the training process, all the servers involved in 
the distributed processing initially have the same 
model data, but the model data varies as the individu-
al training proceeds. With an iterative parameter 
mixture, if training is done with a given amount of 
data at each server, the model data of all servers is 
integrated into a new set of model data. This new 
model data is shared among servers again and each 
server then performs training individually. 

As Jubatus is based on online processing, the serv-
ers collaborate in synchronizing the model data when 
either of the following conditions is satisfied: any one 
server has trained a given number of data items or a 
specific given time has elapsed. This synchronization 
mix enables training results to be shared while all the 
servers are performing the training in parallel. Since 
the training and prediction traffic is distributed to 
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individual servers, it is possible to scale the through-
put in accordance with the number of servers and the 
amount of calculation resources, while maintaining 
the response time. The distributed processing archi-
tecture of Jubatus is discussed below. 
2.2.2   �Basic architecture and membership man-

agement
The Jubatus system consists of server processes 

that perform feature conversion and machine learning 
processing (training and prediction), proxy processes 
that allocate requests from clients to servers, Zoo-
Keeper* [9] processes, and user processes that clients 
have assembled, as shown in Fig. 1. Note that if there 
is only one server process, a user process can access 
it directly without going through a proxy process. 

A server process, with the name jubaclassifier or 
jubaregression in the Jubatus system, maintains 

model data and performs the training and prediction 
processing. The system implements horizontal scal-
ability in response to the load by deploying a number 
of these server processes. Each server process regis-
ters its own identity (ID), e.g., its Internet protocol 
(IP) address and listening port number, in ZooKeeper. 
ZooKeeper exchanges KeepAlive messages with the 
server processes at regular intervals. If a server pro-
cess stops for some reason, such as a hardware fail-
ure, ZooKeeper detects that and automatically deletes 
its registered ID.

A user process is a process executed by a user pro-
gram of Jubatus. It may collect data from other sys-
tems, request server processes to train and predict the 
data, and receive the prediction results. When the user 
process is used by a web application, it is assumed to 
be a web server process such as Apache.

A proxy process, called jubakeeper in the Jubatus 
system, relays communications transparently from a *   ZooKeeper is a trademark of The Apache Software Foundation.

User processes Proxy processes

Server processes

ZooKeeper

Fig. 1.   System architecture of Jubatus.
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user process to a server process. It receives a request 
from a client, selects a suitable server from the list of 
IDs registered in ZooKeeper, and transfers the request 
to that server. The client can therefore execute the 
request without being aware of either the server pro-
cess that is operating or any increase or decrease in 
the number of server processes.

Since the remote procedure calls of Jubatus are 
performed by synchronous communications, an envi-
ronment is created in which the best performance 
occurs when the total number of user process threads 
is greater than the total number of proxy process 
threads, which is greater than the total number of 
server process threads. 

While enabling scale-out, this distributed configu-
ration also ensures that even if part of an individual 
process is stopped, the performance (and precision, in 
some cases) will deteriorate temporarily, but the over-
all system will not halt; thus, this configuration cor-
responds to a distributed system with no single point 
of failure.

2.3   Synchronization method: mix
Jubatus has an extension of the iterative parameter 

mixture, which is called mix. This concept is unique 
to Jubatus. An iterative parameter mixture is a method 
of machine learning in which all of the model data 
trained in the servers is collected together and aver-
aged and then shared again for further training. This 
is regarded as a problem of replication when data 
updated by an individual server is synchronized by all 
of the servers. In other words, from the data manage-
ment viewpoint, the training, average calculations, 
and predictions in machine learning are equivalent to 
the updating, synchronization, and reading of data, 
respectively. 

In an ordinary database system, the traditional 
requirement is to satisfy atomicity, consistency, 
isolation, and durability (ACID) [10]. In other words, 
updated data is always synchronized, even in a dis-
tributed environment, and reading must be enabled 
from the instant that the update was successful. How-
ever, it is difficult to implement a distributed data 
management system that satisfies strict ACID proper-
ties because of the constraint called the CAP theorem 
(C: consistency, A: availability, P: partition tolerance) 
[11]. Recent distributed storage techniques have been 
able to implement practicable performance in a range 
in which this constraint is satisfied. They achieve this 
by defining a behavior called basically available, soft 
state, eventually consistent (BASE), in which mainly 
the consistency (C) part of the constraint is relaxed. 

In BASE, it is sufficient to have matching databases 
in which all of the data updates are eventually imple-
mented. This consistency model is called Eventual 
Consistency [12]. 

In the field of numerical optimization problems 
such as statistical machine learning, deterioration in 
the consistency of data synchronization is considered 
to be a loss of data to be trained, and it results in a 
decrease in accuracy. Conversely, by applying the 
scale-out approach, which enables a large amount of 
data to be processed in parallel, it is possible to use 
enough training data to overcome that loss and pre-
serve realistic accuracy while increasing perfor-
mance. Focusing on this point, we devised a data 
synchronous algorithm called mix which is of a form 
that has an even more relaxed consistency require-
ment. The mix in linear classifiers currently imple-
mented in Jubatus is described below.

With an iterative parameter mixture, once training 
with a given quantity of data is complete, the system 
calculates the average of the model data in all of the 
servers and uses it as an initial value for model data 
in the next phase of the training. In other words, each 
phase is partitioned in accordance with the data size.

With Jubatus, servers do not necessarily all process 
equal amounts of training data, so each phase is par-
titioned by either data quantity or time, as mentioned 
in section 2.2.1. Each phase ends when any of the 
conditions has been satisfied, and the mix starts. More 
specifically, the sequence (shown in Fig. 2) is as fol-
lows. 
(1)	� The server process that started the mix acquires 

a lock on ZooKeeper and becomes the master.
(2)	� It acquires the server process list from Zoo-

Keeper and receives model data that will become 
the subject of the mix from all the processes. 

(3)	� It performs synchronization, e.g., calculates the 
average, with respect to the received data.

(4)	� It distributes the synchronized data to all the 
processes. 

(5)	� Each server process updates its own model data 
with the synchronized data.

(6)	� The master that has confirmed the update releas-
es the lock on ZooKeeper.

In the case of a batch-type iterative parameter mix-
ture, there would be no loss of training data because 
no training is done during steps (2) to (5), but with the 
Jubatus mix, training is performed during this time. 
This is because Jubatus is designed to increase accu-
racy during this time because it supports online-type 
realtime processing in which training and prediction 
requests arrive continuously during the time and must 
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be responded to in real time. 
Jubatus also provides a further advantage: it is 

simple to create a configuration in which, if the mas-
ter process should fail during this time, so that the mix 
processing is interrupted, the status is handed over to 
another master that starts a new mix. The individual 
training results of each server obtained during steps 
(2) to (5) are updated with the synchronized model 
data received in step (5), so they are not reflected in 
subsequent model data. Note that it might be possible 
to reflect the training results during steps (2) to (5) by 
buffering them and retraining or remixing.

In previous research [8], we demonstrated that it is 
possible to implement linear scalability and a timely 
response with high training accuracy by means of a 
simple mix operation that permits such training data 
losses. We have also demonstrated that the effect on 
accuracy was limited when certain real data was used 
and indeed there have been no problems in actual 

use.
The present article, on the basis of experiments, 

further generalizes this situation and clarifies the data 
training performance and its behavior in distributed 
processing by Jubatus using mix.

3.   Applicable algorithms

Jubatus implements several online machine learn-
ing algorithms, such as a linear classification algo-
rithm (classifier), linear regression algorithm (regres-
sion), and nearest neighbor search algorithm, in 
addition to basic statistics functions. Among them, 
this article describes a linear classification algorithm 
(classifier) and linear regression algorithm (regres-
sion) as machine learning algorithms, and an iterative 
parameter mixture in the algorithms to make both 
algorithms correspond to distributed processing.

mix

Server processes 

A B C D

Lock
acquisition 

Lock release 

Model data
acquisition

Model data
update

ZooKeeper

Fig. 2.   Sequence of mix.



Regular Articles

Vol. 10 No. 6 June 2012 �

3.1   Classifier
The linear classification problem is the problem of 

predicting y ∈ {+1, –1} according to whether a fea-
ture vector f(x) ∈ Rm corresponding to an input x 
belongs to a certain class C. Jubatus implements five 
perceptrons: PA [13], PA2, PA3, CW, and ARROW.

3.2   Regression
The regression problem is the problem of assigning 

a real-valued output y ∈ R for a feature vector f(x) ∈ 
Rm corresponding to an input x. Jubatus implements a 
linear regression model using PA. With a linear 
regression model, we use the parameter w ∈ Rm and 
forecast by means of ŷ = wT f(x) ∈ R with respect to 
input x.

3.3   Iterative parameter mixture
As mentioned in section 2.3, the iterative parameter 

mixture is used in the synchronization of training 
results, i.e., model data. The iterative parameter mix-
ture for the PA algorithm, which is used by classifiers 
and regressions, is presented in this section, and a 
generic case of the mix that we assume to be installed 
in Jubatus is also demonstrated. In a certain phase t, 
assume that the model data retained by a server i 
(where i = 1, …, N) is wi(t) and that the model data 
trained using supervised data obtained after the previ-
ous mix is w’i(t). The iterative parameter mixture in 
PA is expressed by the cumulative average:

i=1....N
w(t+1) = 1

N
   ∑   w’i(t) .

With a linear classifier implementation in Jubatus, the 
model data w is a vector with few enough dimensions 
for storage in physical memory; sending all of the wi 
data over the network and calculating averages would 
be unrealistic in practice. Therefore, only differences 
that accumulate during each mix are transferred over 
the network to synchronize w, as shown in the follow-
ing equations.

wi (t+1)= wi(t) + Dw(t) � (1)

i=1....N
Dw(t) = 1

N
   ∑   Dw’i(t)� (2)

The only data transferred over the network is Dw’i(t) 
and Dw(t). Each of these is limited to at most a quan-
tity equivalent to the number of feature quantities 
obtained by the training after the previous mix. Note 
that the model data used during actual training and 
classification is given by

w = wi(t) + Dw’i(t)

and this calculation is done as required. This format 
is similar to linear regression.

4.   Experiments

The precision and performance of machine learning 
are strongly dependent on the dataset. For that reason, 
these experiments evaluated the number of pieces of 
supervised data that were trained per unit time 
(throughput), with the data dimensions being fixed. 
Machine learning has a computing part in which the 
central processing unit (CPU) is a bottleneck and a 
data update part in which memory access is a bottle-
neck. In addition to these, Jubatus also has bottle-
necks on the network side because it is based on the 
client/server model. We provided sufficient numbers 
of client and proxy processes, 16 threads × 4 machines 
each, to ensure that network-related bottlenecks 
could be ignored, and we evaluated the server-side 
performance. 

Random data with specified data dimensions was 
generated and used as a training dataset. More spe-
cifically, if we assume that the supervised data is 
(label, datum) and that the number of dimensions of 
a datum is N, we obtain data for which label ← {0, 
1}R and datum = [0, 1]i, where i = 1, 2, …, N. Since 
there is no correlation between label and datum, the 
throughput level is lower than for a dataset of real 
data of the same magnitude. Since this dataset is ran-
dom data generated from a uniformly random distri-
bution, the data could be very dense in contrast to the 
dataset of sparse vectors assumed by Jubatus. There-
fore, with this dataset, memory bottlenecks can read-
ily occur, so the time required by the mix could be 
high.

4.1   Experiments in a single-server environment
A Jubatus server can initiate a number of threads 

with a single process. First, the throughput of a single 
thread was evaluated. The CPU of the server used in 
the experiments was a Xeon X3430 2.4 GHz (4 
CPUs, 4 cores). Results for N = 32, 64, 128, 256, 512, 
and 1024 are shown in Fig. 3. 

This figure shows that the numbers of dimensions 
and the numbers of queries per second (qps) are sub-
stantially inversely proportional to each other. (Mem-
ory or CPU creates a bottleneck.) We can also see that 
there is no great difference between classifier and 
regression. 
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Second, changes in throughput when the number of 
threads was increased were evaluated. The number of 
server threads, assuming qps to be 1 when there is one 
thread, is plotted on the horizontal axis of the graph 
in Fig. 4 and the relative qps is plotted on the vertical 
axis. Since the computer has 16 cores installed, which 
is at least the maximum number of threads, a graph of 
x = y should be drawn when the bottleneck is caused 
by the CPU rather than by memory. 

It is clear that performance reaches a maximum 
when the number of threads is between 4 and 8, 
depending on the number of dimensions, and perfor-
mance is lower for 16 threads. The bottleneck at 8 or 
16 threads may be caused by memory: too many 

threads could result in slow throughput because of 
memory lock and unlock overheads in general. This 
means that increasing the number of CPUs and the 
number of cores in the single-server environment will 
cause a scale-up limit in this vicinity.

4.2   Experiments in a distributed environment
We evaluated the throughput of Jubatus in a distrib-

uted server environment using the mix process. In the 
light of the evaluation described in section 2.3, we 
performed evaluations with a configuration in which 
the number of threads was 8 and N = 1024. The mix 
timing was when 16 s had elapsed or when 512 
instances of training had been performed in the initial 

7

6

5

4

4

Number of threads

T
hr

ou
gh

pu
t r

at
io

 r
el

at
iv

e 
to

 s
in

gl
e 

th
re

ad

8 16

32
64
128
256
512
1024

3

2

2

1

1
0

Fig. 4.   Training throughput with single server.

3500

3000

2500

2000

1500

1000

500

0
32 64 128

Number of dimensions

N
um

be
r 

of
 q

ue
rie

s 
pe

r 
se

co
nd

256 512 1024

Classifier

Regression

Fig. 3.   �Relationships between the number of dimensions and the number of 
queries per second with a single thread.



Regular Articles

Vol. 10 No. 6 June 2012 �

setting of Jubatus. Since the quantity of arriving data 
was sufficiently large in this experimental environ-
ment, the number of instances of training data was 
taken as the trigger for mix. As introduced in section 
4.1, training data is lost during the mix processing 
between the sending of differences and the receiving 
of synchronized data. The number of pieces of data 
(data items) being trained by each server during the 
mix process was evaluated (the number of data items 
that dropped out). Effective throughput, i.e., the 
actual number of training data items, was calculated 
by subtracting the number of lost data items from the 
total number of trained data items.

The experimental results are shown in Fig. 5. The 
throughput increased linearly with the number of 
servers because more than enough proxy processes 
were provided. Since the time required for the mix 
process also increased as the number of servers 
increased, the proportion of supervised data that was 
not reflected in the training results also increased as a 
consequence. However, the number of pieces of 
trained data per unit time in the entire system 
increased substantially as the number of servers 
increased. Note that the throughput for two nodes 
does not increase proportionally, in contrast to that 
for one node, owing to the overhead of a proxy pro-

cess, which is unnecessary for the single-node con-
figuration.

5.   Conclusions and future challenges

This article has introduced Jubatus, a distributed 
computing framework for realtime analysis of big 
data. In particular, it described mix, which is a key 
method of Jubatus. Mix performs asynchronously 
with respect to the training of the entire system by an 
iterative parameter mixture in online classification 
and online regression problems in a distributed envi-
ronment. We also evaluated the performance of the 
training process in both a single-server environment 
and a distributed server environment in a version of 
Jubatus implementing the mix method and confirmed 
its scalability.

Experiments in a distributed environment with 
eight nodes utilizing the mix demonstrated that there 
was an overall loss of 12.7% of the training data, but 
the number of items of training data per unit time 
increased in a substantially linear manner. This char-
acteristic will be useful when statistical machine 
learning is applied to large quantities of data. 

Future work includes supporting more machine 
learning algorithms, such as graph mining and 
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clustering, and confirming that the calculation frame-
work based on a mix that is a generalized iterative 
parameter mixture will be valid for other machine 
learning algorithms and analysis tasks.
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