
� NTT Technical Review

1. Introduction

With large quantities of data of various types being
produced, distributed, and shared around the world, it
is becoming increasingly important for businesses
worldwide to acquire new knowledge from data such
as people’s behaviors, system operational logs, and
environmental information obtained through their
business activities. This huge amount of data is
known as big data. Much of it is unstructured data
that is not stored in databases, and in the past it was
too large to analyze and was therefore discarded.
However, the analysis of big data at a low cost has
recently been facilitated by open-source software
systems such as Hadoop [1], which allow distributed
computing across clusters of inexpensive commodity
computers. This has made it possible to perform
analysis within realistic time limits and obtain useful
insight from the analysis.

This kind of analytical processing is based on batch
processing in which data has been temporarily stored

and processed as a batch. As analytical methods, it
utilizes statistical analysis, such as summation, and
machine learning. In addition, a machine learning
library called Mahout running on Hadoop has been
developed; it enables batch-type sophisticated analy-
sis of big data in a scalable manner. There is increas-
ing need for realtime capabilities, prompted by dem-
onstrations of the validity of such large-scale data
analysis [2].

One of the technologies with realtime capabilities
is online stream-processing. It supports push-type
analysis methods in which analysis results are calcu-
lated incrementally as soon as data arrives without the
data being stored in a database, instead of the conven-
tional pull-type analysis performed on a database
after data has been stored. Representative examples
of such online stream-processing systems are IBM
InfoSphere Streams, Oracle CEP, StreamBase, Syb-
ase Event Stream Processor, and Truviso. Each of
these is a commercial product with a full lineup of
capabilities, functions, development environments,
and operating tools. They are already in use, includ-
ing use in mission-critical areas such as finance, com-
munications, the military, and medicine. However,

Regular Articles

†	 NTT Software Innovation Center
	 Musashino-shi, 180-8585 Japan

Jubatus: Scalable Distributed
Processing Framework for Realtime
Analysis of Big Data
Satoshi Oda, Kota Uenishi, and Shingo Kinoshita†

Abstract
This article describes a distributed machine learning framework called Jubatus for deep realtime

analysis of big data that we are jointly developing with Preferred Infrastructure Corporation. The main
challenge for Jubatus is to achieve scalable distributed computing for profound analytical processing
such as online machine learning algorithms and provide a common framework for different supported
algorithms. After giving an overview of Jubatus, this article focuses on a key mechanism called mix,
which is a new synchronization method among servers to scale out online machine learning algorithms,
which are potentially difficult to distribute and parallelize. It synchronizes servers loosely and has a
relaxed consistency to the extent allowed by the performance and learning accuracy requirements. This
article also evaluates performances such as throughput and scalability and verifies the degree to which
the consistency requirement is relaxed.

Regular Articles

Vol. 10 No. 6 June 2012 �

these deployments are based on the assumption that
scaling up requires expensive hardware and they do
not support sophisticated analysis functions such as
machine learning but only simple statistical func-
tions.

Therefore, for further business success, it is becom-
ing more important to enable more sophisticated and
timely analysis of big data at a low cost. For this, the
key challenge is to create a scalable distributed com-
puting framework across clusters of inexpensive
commodity computers for realtime and profound ana-
lytical processing using online machine learning
algorithms.

2. Jubatus

To address this challenge, NTT Software Innova-
tion Center and Preferred Infrastructure Corporation
have cooperated in the development of Jubatus [3],
[4] since 2011. Jubatus is a distributed computing
framework for realtime and profound analytical pro-
cessing using online machine learning algorithms,
rather than the batch processing provided by Mahout/
Hadoop and the simple statistics processing provided
by online stream-processing systems. It has scale-up
capability whereby the performance of the system
increases linearly with the addition of inexpensive
commodity computers.

To achieve this scalability, Jubatus must distribute
online machine learning processing among many
computers and synchronize their learning results. An
iterative parameter mixture [5], [6] has been found to
be effective as an algorithm for the synchronization
of this distributed processing [7]. Jubatus has been
modified to use this algorithm to achieve realtime
processing.

Among various types of online stream-processing,
two types of machine learning—linear classification
and linear regression—were initially implemented
for Jubatus because they are basic analytical func-
tions and have a much broader range of applications.
To support these types of machine learning, Jubatus
is aimed at stateful stream-processing, where the sta-
tus of a stream-processing node can be updated in
accordance with the content of arriving data. To
enable application programs to be developed more
efficiently, Jubatus supports a full range of feature
conversion functions that facilitate the conversion of
unstructured data into a format that can be used in
machine learning [8].

2.1 Current position and roadmap
Jubatus is intended to be a framework for realtime

analytical processing. However, the initial version
applies only a few online machine learning algo-
rithms, such as linear classification and regression
algorithms, to the distributed computing environment
by using an iterative parameter mixture, so it is not
yet ready to be provided as a full-range framework.
This is because, although machine learning is gener-
ally taken to be a problem of numerical optimization,
it is not obvious how to design generic forms that will
enable distributed processing, in other words, frame-
works.

In the future, the challenge of designing a suitable
framework will be to extract generic calculation mod-
els in a similar way to MapReduce by applying more
machine learning algorithms and prototyping appli-
cations aimed at real-life tasks.

2.2 Distributed processing
2.2.1 Overview

Jubatus basically achieves realtime analysis of a
huge amount of data that cannot be processed by a
single server by distributing the data over multiple
servers. In machine learning, there are two types of
processing: training and prediction. In the training
process, the model data is updated by a machine
learning algorithm such as a passive-aggressive (PA)
algorithm using supervised data. In the prediction
process, data that a server has received is processed
using the model data and this enables the prediction
to be performed. For example, in the case of classifi-
cation algorithms, the input data is predictively clas-
sified into several specified groups on the basis of the
model data.

In the training process, all the servers involved in
the distributed processing initially have the same
model data, but the model data varies as the individu-
al training proceeds. With an iterative parameter
mixture, if training is done with a given amount of
data at each server, the model data of all servers is
integrated into a new set of model data. This new
model data is shared among servers again and each
server then performs training individually.

As Jubatus is based on online processing, the serv-
ers collaborate in synchronizing the model data when
either of the following conditions is satisfied: any one
server has trained a given number of data items or a
specific given time has elapsed. This synchronization
mix enables training results to be shared while all the
servers are performing the training in parallel. Since
the training and prediction traffic is distributed to

Regular Articles

� NTT Technical Review

individual servers, it is possible to scale the through-
put in accordance with the number of servers and the
amount of calculation resources, while maintaining
the response time. The distributed processing archi-
tecture of Jubatus is discussed below.
2.2.2 �Basic architecture and membership man-

agement
The Jubatus system consists of server processes

that perform feature conversion and machine learning
processing (training and prediction), proxy processes
that allocate requests from clients to servers, Zoo-
Keeper* [9] processes, and user processes that clients
have assembled, as shown in Fig. 1. Note that if there
is only one server process, a user process can access
it directly without going through a proxy process.

A server process, with the name jubaclassifier or
jubaregression in the Jubatus system, maintains

model data and performs the training and prediction
processing. The system implements horizontal scal-
ability in response to the load by deploying a number
of these server processes. Each server process regis-
ters its own identity (ID), e.g., its Internet protocol
(IP) address and listening port number, in ZooKeeper.
ZooKeeper exchanges KeepAlive messages with the
server processes at regular intervals. If a server pro-
cess stops for some reason, such as a hardware fail-
ure, ZooKeeper detects that and automatically deletes
its registered ID.

A user process is a process executed by a user pro-
gram of Jubatus. It may collect data from other sys-
tems, request server processes to train and predict the
data, and receive the prediction results. When the user
process is used by a web application, it is assumed to
be a web server process such as Apache.

A proxy process, called jubakeeper in the Jubatus
system, relays communications transparently from a * ZooKeeper is a trademark of The Apache Software Foundation.

User processes Proxy processes

Server processes

ZooKeeper

Fig. 1. System architecture of Jubatus.

Regular Articles

Vol. 10 No. 6 June 2012 �

user process to a server process. It receives a request
from a client, selects a suitable server from the list of
IDs registered in ZooKeeper, and transfers the request
to that server. The client can therefore execute the
request without being aware of either the server pro-
cess that is operating or any increase or decrease in
the number of server processes.

Since the remote procedure calls of Jubatus are
performed by synchronous communications, an envi-
ronment is created in which the best performance
occurs when the total number of user process threads
is greater than the total number of proxy process
threads, which is greater than the total number of
server process threads.

While enabling scale-out, this distributed configu-
ration also ensures that even if part of an individual
process is stopped, the performance (and precision, in
some cases) will deteriorate temporarily, but the over-
all system will not halt; thus, this configuration cor-
responds to a distributed system with no single point
of failure.

2.3 Synchronization method: mix
Jubatus has an extension of the iterative parameter

mixture, which is called mix. This concept is unique
to Jubatus. An iterative parameter mixture is a method
of machine learning in which all of the model data
trained in the servers is collected together and aver-
aged and then shared again for further training. This
is regarded as a problem of replication when data
updated by an individual server is synchronized by all
of the servers. In other words, from the data manage-
ment viewpoint, the training, average calculations,
and predictions in machine learning are equivalent to
the updating, synchronization, and reading of data,
respectively.

In an ordinary database system, the traditional
requirement is to satisfy atomicity, consistency,
isolation, and durability (ACID) [10]. In other words,
updated data is always synchronized, even in a dis-
tributed environment, and reading must be enabled
from the instant that the update was successful. How-
ever, it is difficult to implement a distributed data
management system that satisfies strict ACID proper-
ties because of the constraint called the CAP theorem
(C: consistency, A: availability, P: partition tolerance)
[11]. Recent distributed storage techniques have been
able to implement practicable performance in a range
in which this constraint is satisfied. They achieve this
by defining a behavior called basically available, soft
state, eventually consistent (BASE), in which mainly
the consistency (C) part of the constraint is relaxed.

In BASE, it is sufficient to have matching databases
in which all of the data updates are eventually imple-
mented. This consistency model is called Eventual
Consistency [12].

In the field of numerical optimization problems
such as statistical machine learning, deterioration in
the consistency of data synchronization is considered
to be a loss of data to be trained, and it results in a
decrease in accuracy. Conversely, by applying the
scale-out approach, which enables a large amount of
data to be processed in parallel, it is possible to use
enough training data to overcome that loss and pre-
serve realistic accuracy while increasing perfor-
mance. Focusing on this point, we devised a data
synchronous algorithm called mix which is of a form
that has an even more relaxed consistency require-
ment. The mix in linear classifiers currently imple-
mented in Jubatus is described below.

With an iterative parameter mixture, once training
with a given quantity of data is complete, the system
calculates the average of the model data in all of the
servers and uses it as an initial value for model data
in the next phase of the training. In other words, each
phase is partitioned in accordance with the data size.

With Jubatus, servers do not necessarily all process
equal amounts of training data, so each phase is par-
titioned by either data quantity or time, as mentioned
in section 2.2.1. Each phase ends when any of the
conditions has been satisfied, and the mix starts. More
specifically, the sequence (shown in Fig. 2) is as fol-
lows.
(1)	� The server process that started the mix acquires

a lock on ZooKeeper and becomes the master.
(2)	� It acquires the server process list from Zoo-

Keeper and receives model data that will become
the subject of the mix from all the processes.

(3)	� It performs synchronization, e.g., calculates the
average, with respect to the received data.

(4)	� It distributes the synchronized data to all the
processes.

(5)	� Each server process updates its own model data
with the synchronized data.

(6)	� The master that has confirmed the update releas-
es the lock on ZooKeeper.

In the case of a batch-type iterative parameter mix-
ture, there would be no loss of training data because
no training is done during steps (2) to (5), but with the
Jubatus mix, training is performed during this time.
This is because Jubatus is designed to increase accu-
racy during this time because it supports online-type
realtime processing in which training and prediction
requests arrive continuously during the time and must

Regular Articles

� NTT Technical Review

be responded to in real time.
Jubatus also provides a further advantage: it is

simple to create a configuration in which, if the mas-
ter process should fail during this time, so that the mix
processing is interrupted, the status is handed over to
another master that starts a new mix. The individual
training results of each server obtained during steps
(2) to (5) are updated with the synchronized model
data received in step (5), so they are not reflected in
subsequent model data. Note that it might be possible
to reflect the training results during steps (2) to (5) by
buffering them and retraining or remixing.

In previous research [8], we demonstrated that it is
possible to implement linear scalability and a timely
response with high training accuracy by means of a
simple mix operation that permits such training data
losses. We have also demonstrated that the effect on
accuracy was limited when certain real data was used
and indeed there have been no problems in actual

use.
The present article, on the basis of experiments,

further generalizes this situation and clarifies the data
training performance and its behavior in distributed
processing by Jubatus using mix.

3. Applicable algorithms

Jubatus implements several online machine learn-
ing algorithms, such as a linear classification algo-
rithm (classifier), linear regression algorithm (regres-
sion), and nearest neighbor search algorithm, in
addition to basic statistics functions. Among them,
this article describes a linear classification algorithm
(classifier) and linear regression algorithm (regres-
sion) as machine learning algorithms, and an iterative
parameter mixture in the algorithms to make both
algorithms correspond to distributed processing.

mix

Server processes

A B C D

Lock
acquisition

Lock release

Model data
acquisition

Model data
update

ZooKeeper

Fig. 2. Sequence of mix.

Regular Articles

Vol. 10 No. 6 June 2012 �

3.1 Classifier
The linear classification problem is the problem of

predicting y ∈ {+1, –1} according to whether a fea-
ture vector f(x) ∈ Rm corresponding to an input x
belongs to a certain class C. Jubatus implements five
perceptrons: PA [13], PA2, PA3, CW, and ARROW.

3.2 Regression
The regression problem is the problem of assigning

a real-valued output y ∈ R for a feature vector f(x) ∈
Rm corresponding to an input x. Jubatus implements a
linear regression model using PA. With a linear
regression model, we use the parameter w ∈ Rm and
forecast by means of ŷ = wT f(x) ∈ R with respect to
input x.

3.3 Iterative parameter mixture
As mentioned in section 2.3, the iterative parameter

mixture is used in the synchronization of training
results, i.e., model data. The iterative parameter mix-
ture for the PA algorithm, which is used by classifiers
and regressions, is presented in this section, and a
generic case of the mix that we assume to be installed
in Jubatus is also demonstrated. In a certain phase t,
assume that the model data retained by a server i
(where i = 1, …, N) is wi(t) and that the model data
trained using supervised data obtained after the previ-
ous mix is w’i(t). The iterative parameter mixture in
PA is expressed by the cumulative average:

i=1....N
w(t+1) = 1

N
 ∑ w’i(t) .

With a linear classifier implementation in Jubatus, the
model data w is a vector with few enough dimensions
for storage in physical memory; sending all of the wi
data over the network and calculating averages would
be unrealistic in practice. Therefore, only differences
that accumulate during each mix are transferred over
the network to synchronize w, as shown in the follow-
ing equations.

wi (t+1)= wi(t) + Dw(t) � (1)

i=1....N
Dw(t) = 1

N
 ∑ Dw’i(t)� (2)

The only data transferred over the network is Dw’i(t)
and Dw(t). Each of these is limited to at most a quan-
tity equivalent to the number of feature quantities
obtained by the training after the previous mix. Note
that the model data used during actual training and
classification is given by

w = wi(t) + Dw’i(t)

and this calculation is done as required. This format
is similar to linear regression.

4. Experiments

The precision and performance of machine learning
are strongly dependent on the dataset. For that reason,
these experiments evaluated the number of pieces of
supervised data that were trained per unit time
(throughput), with the data dimensions being fixed.
Machine learning has a computing part in which the
central processing unit (CPU) is a bottleneck and a
data update part in which memory access is a bottle-
neck. In addition to these, Jubatus also has bottle-
necks on the network side because it is based on the
client/server model. We provided sufficient numbers
of client and proxy processes, 16 threads × 4 machines
each, to ensure that network-related bottlenecks
could be ignored, and we evaluated the server-side
performance.

Random data with specified data dimensions was
generated and used as a training dataset. More spe-
cifically, if we assume that the supervised data is
(label, datum) and that the number of dimensions of
a datum is N, we obtain data for which label ← {0,
1}R and datum = [0, 1]i, where i = 1, 2, …, N. Since
there is no correlation between label and datum, the
throughput level is lower than for a dataset of real
data of the same magnitude. Since this dataset is ran-
dom data generated from a uniformly random distri-
bution, the data could be very dense in contrast to the
dataset of sparse vectors assumed by Jubatus. There-
fore, with this dataset, memory bottlenecks can read-
ily occur, so the time required by the mix could be
high.

4.1 Experiments in a single-server environment
A Jubatus server can initiate a number of threads

with a single process. First, the throughput of a single
thread was evaluated. The CPU of the server used in
the experiments was a Xeon X3430 2.4 GHz (4
CPUs, 4 cores). Results for N = 32, 64, 128, 256, 512,
and 1024 are shown in Fig. 3.

This figure shows that the numbers of dimensions
and the numbers of queries per second (qps) are sub-
stantially inversely proportional to each other. (Mem-
ory or CPU creates a bottleneck.) We can also see that
there is no great difference between classifier and
regression.

Regular Articles

� NTT Technical Review

Second, changes in throughput when the number of
threads was increased were evaluated. The number of
server threads, assuming qps to be 1 when there is one
thread, is plotted on the horizontal axis of the graph
in Fig. 4 and the relative qps is plotted on the vertical
axis. Since the computer has 16 cores installed, which
is at least the maximum number of threads, a graph of
x = y should be drawn when the bottleneck is caused
by the CPU rather than by memory.

It is clear that performance reaches a maximum
when the number of threads is between 4 and 8,
depending on the number of dimensions, and perfor-
mance is lower for 16 threads. The bottleneck at 8 or
16 threads may be caused by memory: too many

threads could result in slow throughput because of
memory lock and unlock overheads in general. This
means that increasing the number of CPUs and the
number of cores in the single-server environment will
cause a scale-up limit in this vicinity.

4.2 Experiments in a distributed environment
We evaluated the throughput of Jubatus in a distrib-

uted server environment using the mix process. In the
light of the evaluation described in section 2.3, we
performed evaluations with a configuration in which
the number of threads was 8 and N = 1024. The mix
timing was when 16 s had elapsed or when 512
instances of training had been performed in the initial

7

6

5

4

4

Number of threads

T
hr

ou
gh

pu
t r

at
io

 r
el

at
iv

e
to

 s
in

gl
e

th
re

ad

8 16

32
64
128
256
512
1024

3

2

2

1

1
0

Fig. 4. Training throughput with single server.

3500

3000

2500

2000

1500

1000

500

0
32 64 128

Number of dimensions

N
um

be
r

of
 q

ue
rie

s
pe

r
se

co
nd

256 512 1024

Classifier

Regression

Fig. 3. �Relationships between the number of dimensions and the number of
queries per second with a single thread.

Regular Articles

Vol. 10 No. 6 June 2012 �

setting of Jubatus. Since the quantity of arriving data
was sufficiently large in this experimental environ-
ment, the number of instances of training data was
taken as the trigger for mix. As introduced in section
4.1, training data is lost during the mix processing
between the sending of differences and the receiving
of synchronized data. The number of pieces of data
(data items) being trained by each server during the
mix process was evaluated (the number of data items
that dropped out). Effective throughput, i.e., the
actual number of training data items, was calculated
by subtracting the number of lost data items from the
total number of trained data items.

The experimental results are shown in Fig. 5. The
throughput increased linearly with the number of
servers because more than enough proxy processes
were provided. Since the time required for the mix
process also increased as the number of servers
increased, the proportion of supervised data that was
not reflected in the training results also increased as a
consequence. However, the number of pieces of
trained data per unit time in the entire system
increased substantially as the number of servers
increased. Note that the throughput for two nodes
does not increase proportionally, in contrast to that
for one node, owing to the overhead of a proxy pro-

cess, which is unnecessary for the single-node con-
figuration.

5. Conclusions and future challenges

This article has introduced Jubatus, a distributed
computing framework for realtime analysis of big
data. In particular, it described mix, which is a key
method of Jubatus. Mix performs asynchronously
with respect to the training of the entire system by an
iterative parameter mixture in online classification
and online regression problems in a distributed envi-
ronment. We also evaluated the performance of the
training process in both a single-server environment
and a distributed server environment in a version of
Jubatus implementing the mix method and confirmed
its scalability.

Experiments in a distributed environment with
eight nodes utilizing the mix demonstrated that there
was an overall loss of 12.7% of the training data, but
the number of items of training data per unit time
increased in a substantially linear manner. This char-
acteristic will be useful when statistical machine
learning is applied to large quantities of data.

Future work includes supporting more machine
learning algorithms, such as graph mining and

N
um

be
r

of
 q

ue
rie

s
pe

r
se

co
nd

 (
qp

s)

Ideal throughput without mix overhead

Effective throughput

Number of processes

2500

2000

1500

1000

500

0
0 1 2 3 4 5 6 7 8 9

Number of
processes, threads

1, 8
2, 16
4, 32
8, 64

Ideal throughput without
mix overhead (qps)

521
620
1076
1967

Drop rate by mix
process (%)

0
6.6
7.2
12.7

Effective throughput
(qps)

521
579
999
1717

Fig. 5. Numbers of processes and training throughput.

Regular Articles

� NTT Technical Review

clustering, and confirming that the calculation frame-
work based on a mix that is a generalized iterative
parameter mixture will be valid for other machine
learning algorithms and analysis tasks.

References

[1]	 Apache Hadoop. http://hadoop.apache.org/
[2]	 D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegel-

berg, H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, R.
Schmidt, and A. Aiyer, “Apache Hadoop Goes Realtime at Facebook,”
Proc. of the 2011 International Conference on Management of Data
(SIGMOD’11) Athens, Greece.

[3]	 Jubatus. http://jubat.us
[4]	 NTT press release. http://www.ntt.co.jp/news2011/1110e/111026a.

html
[5]	 R. McDonald, K. Hall, and G. Mann, “Distributed Training Strategies

for the Structured Perceptron,” Proc. of the 2010 Annual Conference
of the North American Chapter of the ACL, pp. 456–464, Los Ange-
les, California, USA.

[6]	 G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker,
“Efficient Large-scale Distributed Training of Conditional Maximum
Entropy Models,” Neural Information Processing Systems (NIPS),
2009.

[7]	 D. Okanohara, “Machine Learning Utilizing Large-scale Data by
MapReduce,” Hadoop Conference Japan, 2011 (in Japanese).

[8]	 D. Okanohara, Y. Unno, K. Uenishi, and S Oda, “Future Prospects for
Techniques Supporting Large-scale Distributed Real-time Machine
Learning,” WebDB Forum, Tokyo, Japan, 2011 (in Japanese).

[9]	 Apache ZooKeeper. http://zookeeper.apache.org
[10]	 T. Haerder and A. Reuter, “Principles of Transaction-oriented Data-

base Recovery,” ACM Comput. Surv., Vol. 15, No. 4, pp. 287–317,
1983.

[11]	 S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-tolerant Web Services,” SIGACT
News, Vol. 33, No. 2, pp. 51–59, 2002.

[12]	 D. Pritchett, “BASE: An Acid Alternative,” Queue, Vol. 6, No. 3, pp.
48–55, 2008.

[13]	 K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online Passive-aggressive Algorithms,” Journal of Machine Learn-
ing Research, 2006.

Satoshi Oda
Researcher, Cloud System SE Project, NTT

Software Innovation Center.
He received the B.E. and M.E. degrees in engi-

neering from Keio University, Kanagawa, in
2003 and 2005, respectively. Since joining NTT
Information Sharing Platform Laboratories in
2005, he has been engaged in R&D of informa-
tion security, fast implementation of cryptogra-
phy, and security protocols. As a result of organi-
zational changes in April 2012, he is now in NTT
Software Innovation Center. He received the
2007 Outstanding Presentation Award from the
Japan Society for Industrial and Applied Mathe-
matics (JSAIM) and the 2009 Life Intelligence
and Office Information System (LOIS) Research
Award. He is a member of JSAIM.

Kota Uenishi
Engineer, Distributed Data Processing Plat-

form Project, NTT Software Innovation Center.
He received the B.E. degree in engineering and

the M.S. degree from the Department of Frontier
Informatics at the University of Tokyo in 2005
and 2007, respectively. He joined NTT Informa-
tion Sharing Platform Laboratories in 2007.
Since 2008, he has been engaged in R&D of
fault-tolerant distributed computing systems for
a search engine backend. As a result of organiza-
tional changes in April 2012, he is now in NTT
Software Innovation Center.

Shingo Kinoshita
Senior Research Engineer, Supervisor, Group

Leader, Distributed Computing Project, NTT
Software Innovation Center.

He received the B.E. degree in solid state phys-
ics engineering from Osaka University in 1991.
Since joining NTT Information and Communica-
tion Systems Laboratories in 1991, he has been
engaged in R&D of fault-tolerant distributed
computing systems, Internet protocols, especial-
ly a reliable multicast protocol, information
security, especially RFID privacy protection
technology, and big data computing. During
2006–2007, he studied the management of tech-
nology at University College London and
received the M.Sc. degree in 2007. During
2008–2011, he worked in human resources in the
planning section of the laboratories. He is cur-
rently managing distributed computing projects
including Hadoop, Jubatus, and the mobile cloud
computing technology Virtual Smartphone. As a
result of organizational changes in April 2012, he
is now in NTT Software Innovation Center. He
received the 2005 Information Processing Soci-
ety of Japan (IPSJ) Research and Development
Award, the 2003 IPSJ Symposium CSS Best
Paper Award, the 1998 IPSJ Symposium DiCo-
Mo Best Presentation Award. He is a member of
IPSJ and the steering committee of IPSJ SIG-
DPS.

http://www.ntt.co.jp/news2011/1110e/111026a.html

