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1.   Background

1.1   Spin in conventional electronic devices
An electron has not only a charge degree of free-

dom but also a spin degree of freedom associated 
with the spin angular momentum. If a charged parti-
cle has angular momentum, magnetic moment is 
generated. Therefore, each electron, having a spin 
angular momentum, acts as a micromagnet. The spin 
degree of freedom can be interpreted, in one way, as 
the freedom in the orientation of the micromagnet. In 
other words, spin is not a conserved quantity. Thus, it 
has not been easy to use them in conventional devic-
es. Recently, research on electron spin in semicon-
ductors has become increasingly important because 
future technologies that will transcend existing con-
cepts, such as quantum computers based on spin 
qubits, will be based on current basic research such as 
the fundamental research studies described in this 
article.

1.2   Spin and magnetic moment
While spin is naively interpreted as a micromagnet, 

its quantum mechanical properties are complicated 
and the spin sometimes behaves contrary to everyday 
experience. For example, one would associate the 
word spin with the spin of a tennis ball, where the 
magnitude of the ball’s angular momentum can be 
varied continuously by applying a torque. However, 

the spin of an electron cannot be varied continuously. 
To describe such peculiar properties of electron spin, 
we dare to provide a quantum mechanical explana-
tion of electron spin in this article.

1.3   The Stern-Gerlach experiment 
The fact that the magnitude of electron spin is not 

continuously variable but takes only discrete values 
was confirmed by the Stern-Gerlach experiment 
(Fig. 1) [1]. While tiny particles of silver were used in 
the actual experiment, the experimental results reflect 
the properties of electron spin. When electrons pass 
through space containing a magnetic field whose 
magnitude is graded in the perpendicular direction, 
their spins are decoupled into two states with differ-
ent magnetic moments, as if they have been sorted 
(taking a bar magnet as an example, these are an up-
spin state with the south (S) magnetic pole facing 
upward and a down-spin state with the S pole facing 
downward). A straightforward interpretation of the 
measured results leads to the conclusion that the mag-
netic moment of electron spins can take only two 
values: either the value corresponding to the upward 
direction or the value corresponding to the downward 
direction. Then, might there be electrons with a spin 
state that is neither upward nor downward vertically, 
such as those whose S pole is pointing horizontally 
among the electrons that have passed through the 
detector? To give the conclusion first: yes, there are 
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such electrons. To understand why and to make cor-
rect predictions about spin-related phenomena in 
semiconductor devices, we need an accurate under-
standing of quantum mechanics.

1.4   �Probability interpretation of the wave func-
tion and reduction of the wave packet

Two well-known concepts in quantum mechanics 
are probability interpretation (of the wave function) 
and reduction of the wave packet. Considering a one-
dimensional world for simplicity, let us express the 
wave function of an electron by Ψ(x). 

Probability interpretation means the following. 
When we try to measure the location of an electron 
described by Ψ(x), the probability that the electron is 
found at a position between x and x+Δx is given by 
|Ψ(x)|2Δx. Reduction of the wave packet is related to 
probability interpretation. It is a term that describes 
how an electron in a state with a wide probabilistic 
distribution |Ψ(x)|2 (wave packet) before measure-
ment collapses to a point at a certain position x as a 
consequence of the measurement.

1.5   Spin states other than up and down
Besides an electron’s position, its spin state is also 

more correctly described by a wave function. If we 
apply the concept of reduction of the wave packet, 
then the Stern-Gerlach experiment is interpreted as 
the collapse of the wave function of electron spin to 
either an up state or a down state by measurement. We 

note that the up/down direction is the direction of the 
magnetic field (z direction) within the experimental 
apparatus (detector). 

Since we have freedom in the direction of the mag-
netic field to be set in the detector of the experimental 
apparatus, we can also select any arbitrary direction 
for the observation of a magnetic moment. We would 
like to emphasize that the phenomena we are explain-
ing here are not related to the torque that the mag-
netic field in the detector may apply to the electron 
spin to change its orientation. We are saying that the 
orientation of the spin is varied as a result of the 
reduction of the wave packet. 

To understand the above description, one needs to 
know that any state (wave function) of electron spin 

is described by a wave function a|↑〉z + b|↓〉z=(ab), 
which is a superposition of the up-spin (10) ≡ |↑〉z and 

down-spin (01) ≡ |↓〉z wave functions. One needs to 

accept the quantum mechanical conclusion that the 
probabilities of observing the up- and down-spin 

states upon measurement of spin state a|↑〉z + b|↓〉z=(ab)
are given by |a|2 and |b|2, respectively, where a and b 
are complex numbers such that |a|2 + |b|2 = 1. More-
over, if we perform the measurements on the same 

spin state a|↑〉z + b|↓〉z=(ab) while varying the direction 

of the magnetic field in the detector, we will find a 
certain direction for which observation of only up-
spin electrons will result (up-spin with respect to the 
chosen magnetic field direction). This direction is 
called the direction (or orientation) of the electron 
spin. Generally, electron spin orientations differ from 
one electron to another. However, the conclusion of 
quantum mechanics is that any electron spin can be 
expressed as a|↑〉z + b|↓〉z by finding appropriate com-
plex numbers a and b, whichever direction it is point-
ing in.

From the above discussion, we can conclude the 
following. If there are two spin states |↑〉x and |↓〉x that 
are orientated in the +x and -x directions, respectively, 
we should be able to write them as a superposition of 

|↑〉z and |↓〉z, which ultimately leads to |↑〉x=
√2
1 (|↑〉z +

|↓〉z) and |↓〉x=
√2
1 (|↑〉z – |↓〉z). If we interpret this 

probabilistically, then the probability that a spin-up or 
spin-down state is detected (with respect to the z 
direction) is 50% upon the measurement of these 
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Fig. 1.   Stern-Gerlach experiment.
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spins. Conversely, the state a|↑〉z + b|↓〉z can also be

written as 
√2

(a+b)
 |↑〉x + 

√2
(a–b)

 |↓〉x using |↑〉x and |↓〉x. 

Therefore, if the direction of the magnetic field in the 
detector is in the x direction, the up- and down- spin 

states will be observed with probabilities 
|a+b|2

2  and 
|a–b|2

2 , respectively. 

We finally ask which direction is the electron spin 
a|↑〉z + b|↓〉z pointing in? We provide only the conclu-
sion here. The three-dimensional vector for the orien-
tation of this spin is (x, y, z) = (2Re(a*b), 2Im(a*b), 
|a|2 – |b|2) , where Re(a*b) and Im(a*b) are the real 
and imaginary parts of the complex number a*b, 
respectively.

1.6   Spin splitting due to the Rashba effect 
In our research, we use a spin-orbit interaction 

called the Rashba effect [2] in controlling electron 
spins. A Hamiltonian*1 of the spin-orbit interaction 
generally takes the form (∇V×p)•σ. Using the con-
finement potential V(z) of the quantum well for V, 
i.e., ∇V(z) = (0, 0, -eEz), and hk for p (momentum), 
we obtain the Hamiltonian for the Rashba effect as 
HR = aso 〈Ez〉 (kyσx – kxσy). Here, aso is a material-
dependent intrinsic constant for the Rashba effect, 
〈Ez〉 is the expectation value of Ez, and σx and σy are 
the Pauli spin matrices.*2 If we use a plane wave for 
the orbital part of the wave function for simplicity 
with a two-dimensional wave vector k≡(kx, ky)=(k, 0), 
the wave functions (eigenfunctions) including the 

spin part are given by 
√2
eikx

 ( i
−+1) with respective eige-

nenergies 
h2k2

2m*  ± aso 〈Ez〉k. Thus, the energy splitting 

between the two states 
√2
eikx

 ( i
−+1) at a constant wave 

vector, which is caused by a spin-orbit interaction 
associated with the confinement potential of semi-
conductor heterostructures, is called the Rashba split-
ting*3 (Fig. 2).

1.7   Spin rotation

Consider a superpositioned wave function ei(k−∆k)x

2
 

( i
−1) + ei(k+∆k)x

2
 ( 

i
1) =ieikx (                )cos (∆kx)

sin (∆kx)  that is com- 

posed of two wave functions associated with two 
points on the Fermi surface*4 (k±Δk, 0), where Δk = 
aso 〈Ez〉 m*/h2, in a system having the Rashba split-
ting. The spin part of this wave function at x = 0 is 

(10), where the spin is orientated in the z direction. The

electron spin states for x ≠ 0 are                
               
cos (∆kx)
sin (∆kx)

 = 

cos(∆kx)  
  
1
0

+sin(∆kx)  
  
0
1

, the spin orientation of 

which is (sin(2Δkx), 0, cos(2Δkx)) in a three-dimen-
sional vector. Thus, the spin rotates in the x-z plane as 
a function of the electron’s position x. An electron in 
a semiconductor can be regarded as a wave packet 
having a central wave number. Since the propagation 
speed of a wave packet is given by its group velocity 

(Fermi velocity) 
hk
m* , an electron in uniform linear 

motion changes its position according to its Fermi 
velocity. Thus, the spin orientation will rotate accord-
ingly. The angular velocity of the electron spin *1	 Hamiltonian: Operator that provides a physical quantity corre-

sponding to energy in quantum physics.

*2	 Pauli spin matrices: Three matrices σx = 0 1
1 0(      ), σy = 0 − i

i    0(         ) , and 

	 σz = 1   0
0 − 1(         )  used to describe the spin angular momentum in 

	 quantum mechanics, and a vector form of them, i.e., σ= (σx, σy, 
σz).

*3	 Rashba splitting: Spin splitting in the energy dispersion relation 
of an electron that is caused by the Rashba spin-orbit coupling 
effect.
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Fig. 2.   �Energy dispersion of two-dimensional electron 
system with the Rashba splitting.

*4	 Fermi surface: Curved surface in the wave number space (k-space) 
defined by E(k) = EF, where E(k) is the band energy dispersion 
of an electron in a solid and EF is the Fermi energy. Regions in 
k-space that have energies lower than EF are filled with electrons. 
The electron transport properties of a solid are usually closely re-
lated to the properties of the Fermi surface including its shape 
and how it interacts with phonons and impurities.
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rotation is given as ω = 2aso 〈Ez〉 k/h in this case. The 
tunability of 〈Ez〉 by an external gate or a specific 
design of the heterostructure enables us to control the 
angular velocity of spin rotation, which is one of the 
greatest attractions of the Rashba effect. Some exam-
ples of spin rotation for an electron moving at the 
Fermi velocity are shown in Fig. 3, where aso acts as 
a parameter indicating how easy it is to control the 
electron spin precession by an electric field 〈Ez〉. 

In research on the Rashba effect up to now, it has 
been important to obtain a value called the Rashba 
coefficient α, which corresponds to aso 〈Ez〉. Pieces of 
circumstantial evidence showing that the α values are 
controllable by a gate had been accumulated, though 
nobody had been able to show a quantitatively linear 
relationship between α and 〈Ez〉. The factors that have 
delayed the progress of this research include (1) a 
lack of experimental methods that enable one to 
measure the value of 〈Ez〉 within a quantum well 
directly and (2) uncertainty about the size of the Dres-
selhaus spin splitting (the spin splitting arising from 
the bulk inversion asymmetry), which coexists with 
the Rashba spin splitting. In collaborative work 
between Hokkaido University and NTT Basic 
Research Laboratories, we have demonstrated the 
linear relationship α = aso 〈Ez〉 quantitatively by using 
In0.53Ga0.47As semiconductor quantum wells (Fig. 4), 
which are lattice-matched to (001) InP; this led to the 

successful quantitative determination of the value of 
aso [3]. A key to our success was the coincidental 
discovery of an epitaxial wafer that has the property 
that the value of 〈Ez〉 can seemingly be varied from 
positive to negative values by means of gating. Care-
ful experiments with this epitaxial wafer and a series 
of similar wafers resulted in our quantitative determi-
nation of aso.

2.   Latest results

2.1   Experimental procedure for determining aso

The testpiece used in our experiment was a 10-nm-
thick In0.53Ga0.47As semiconductor quantum well 
grown on the (001) plane of an InP substrate (with 
barrier layers of In0.52A10.48As). We controlled the 
electron density and the perpendicular electric field 
〈Ez〉 within the quantum well by means of a surface 
gate in a field-effect-transistor structure (Fig. 4). We 
used a dilution refrigerator to cool the sample down 
to ~100 mK (electron temperature), in order to mini-
mize the effect of thermal disturbance and increase 
the measurement sensitivity, and measured the elec-
tric resistance as a function of the perpendicular mag-
netic field (magneto-resistance) for various gate volt-
ages. In these measurements, a distinctive phenome-
non called the weak antilocalization appeared in the 
vicinity of zero magnetic field, owing to the 

(a) If 〈Ez〉 = 0 Time

(b) If 〈Ez〉 > 0 Time

(c) If 〈Ez〉 < 0 Time

Fig. 3.   Examples of spin precession.
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interference of the electron wave functions. We were 
able to determine the value of the Rashba coefficient 
α by theoretically analyzing this experimentally 
observed phenomenon [4].

2.2   �Weak localization and weak antilocalization 
effects 

Weak localization is a phenomenon that occurs 
when an electron is scattered sequentially in a loop by 
impurities distributed randomly in the conductor, 
whereby the electrons are weakly localized in the 
loop as a result of constructive interference of the 
wave functions. For example, if an electron happens 
to follow the closed path indicated by blue arrows in 
Fig. 5(a) after the injection of the electron as indi-
cated by the black arrow, then the red path, which is 

the time-reversed path of the blue one, should also be 
present quantum mechanically with the same proba-
bility as the blue path. Since the lengths of the two 
paths are exactly equal, constructive interference 
always occurs at the endpoint of the two paths (the 
position of the green impurity in Fig. 5(a)), if the 
electron propagation is not accompanied by spin rota-
tion. This results in enhancement of the backscatter-
ing probability. This is the mechanism of weak local-
ization. 

The weak localization effect is partially destroyed 
if a magnetic field is applied perpendicular to the 
quantum well. As a result, a negative magneto-resis-
tance appears in the vicinity of the zero magnetic 
field, as shown by the black curve in Fig. 5(b). The 
weak localization effect observed in the vicinity of 

(a) Generation mechanism

Incident electron
wave

Electric resistance

Weak localization

Magnetic field B

Weak antilocalization

(b) Magneto-resistance effect

Fig. 5.   Weak localization and weak antilocalization effects.
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zero magnetic field is also suppressed by the rotation 
of spins, which is called weak antilocalization. In a 
more precise description, the mechanism of the weak 
antilocalization is related to the non-commutativity 
of spin rotation operators (AB ≠ BA for arbitrarily 
chosen A and B). This results in a positive magneto-
resistance if the weak antilocalization is occurring 
(the red curve in Fig. 5(b)).

The results of our experiment are shown in Fig. 6(a), 
where the electric conductivity of a quantum well 
sample is plotted (on the vertical axis) as a function 
of the magnetic field (horizontal axis) for various 
values of the gate voltage Vg. It is necessary to invert 
the + and - signs on the vertical axis (or invert up and 
down) when comparing the results with the sche-
matic weak localization/antilocalization effects 
shown in Fig. 5(b) because the data plotted here are 
the electric conductances, not the resistances. 
Because Vg is a relative quantity, its value is set to 0 
V when the Rashba splitting is minimized in this 
analysis. This experimental result shows that the 
weak antilocalization effect becomes stronger as the 
absolute value of Vg increases. Then, the value of the 
Rashba coefficient α can be extracted from the values 
of the fitting parameters that fit the experimental 
result best assuming a recently developed theoretical 
model. The gate voltage dependence of the Rashba 
spin-orbit interaction coefficient α of this sample 

obtained from such analyses is shown in Fig. 6(b). 
We note that the angular velocity of the electron spin 
rotation rises faster as α increases. The fact that we 
successfully made accurate predictions of the values 
of α as a function of the gate voltage Vg as in Fig. 6(b) 
indirectly means that we succeeded in controlling the 
angular velocity of the electron spin rotation freely by 
means of the gate of a transistor. For example, we can 
rotate the spins of electrons within a semiconductor 
about some specific axis ((b) in Fig. 3), halt the rota-
tion ((a) in Fig. 3), and rotate them in reverse ((c) in 
Fig. 3) all by means of a gate. As a result, we expect 
that the knowledge acquired in this research will 
bring us one step closer to being able to utilize elec-
tron spins in future electronic devices such as quan-
tum computers and ultra-low-power logic devices.
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(a) Experimental results (b) Gate voltage dependence of the Rashba coefficient α.
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