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Unraveling an Exotic Electronic State
for Error-free Quantum Computation

Koji Muraki

Abstract

A recently proposed approach could lead to a totally new architecture for quantum computation with
an exceedingly low error rate by exploiting quasiparticles that behave differently from fundamental
particles in nature. Highly sensitive nuclear magnetic resonance measurements have unraveled an
electronic state in a semiconductor device that is expected to host such exotic quasiparticles. The
experimental results support the theory predicting that this state will have properties suitable for error-

free quantum computation.

1. Introduction

Quantum computers are expected to possess com-
putational capabilities far exceeding those of conven-
tional computers. Their immense computing power
stems from quantum parallelism. The classical, or
digital, bit used by conventional computers can take
only one value at a time: either O or 1. On the other
hand, the qubit—the quantum analog of a bit—can
encode any superposition of two quantum states |0)
and |1). The state of a system comprising n qubits is
thus described by a vector that spans an entire 2"-
dimensional space referred to as Hilbert space. Cal-
culations are performed by executing a series of gate
operations that transforms the state of the qubits and
the result is read out by measuring their final state.
Quantum parallelism arises because the time evolu-
tion of the qubits follows many different trajectories
in the huge Hilbert space in parallel until the final
state is projected by a measurement. During quantum
computation, errors can occur just as they can in con-
ventional computers, but the errors in quantum com-
putation have a much greater impact and are a major
obstacle to building a practical quantum computer.
Errors can be induced by both intentional logic gate
operations and unintentional interactions with the
environment. For example, a gate operation intended
to rotate a qubit by 90° may actually produce a 90.1°
rotation. Likewise, uncontrolled interactions with the
environment can cause the state to evolve in an unin-

tended way. Fortunately, error correction is possible
for quantum computers; it is done by representing
information redundantly so that errors can be detect-
ed without measuring the information, which would
destroy it [1]-[4]. However, information redundancy
inevitably implies a corresponding increase in the
number of qubits required to implement the same
algorithm. Furthermore, there is a threshold for the
error rate above which error correction is no longer
possible [5]-[8]; this imposes a stringent requirement
on the admissible error rate.

Recently, a totally new architecture for quantum
computation with an exceedingly low error rate has
been proposed and it has attracted interest. The archi-
tecture, called topological quantum computation
[9]1-[14], exploits quasiparticles, which are elemen-
tary excitations of a many-particle system that behave
like particles. However, the quasiparticles that can be
used are restricted to those belonging to a specific
class called non-Abelian quasiparticles or non-Abe-
lian anyons, which behave distinctly differently from
fundamental particles in nature. A state containing
such quasiparticles is transformed into a different
state distinguishable from the initial one when two
quasiparticles are moved so that they exchange posi-
tions. However, topological quantum computation is
still only a theoretical possibility: it is hypothetical in
that no experimental evidence has yet been found for
the existence of non-Abelian quasiparticles in a real
physical system. A prime candidate for a physical
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Table 1. Types of (quasi)particles and examples.

Particles
Type Fundamental Composite Quasiparticles Statistics
particles particles
Fermion Electron Proton, neutron Hole
Boson Photon Helium atom Phonon Abelian
Anyon 1/3 quasiparticle
(only in two dimensions) (5/2 quasiparticle) | Non-Abelian

system that is expected to host such quasiparticles is
the v = 5/2 fractional quantum Hall (FQH) state [15],
[16], an exotic electronic state that emerges in a pris-
tine semiconductor heterostructure at millikelvin
temperatures (v: filling factor); however, its exact
nature is not yet fully understood. My colleagues and
I have recently performed nuclear magnetic reso-
nance (NMR) measurements on the v = 5/2 state and
unraveled its nature [17]. The experimental results
support the theory [18], [19] predicting that the state
will have properties suitable for error-free quantum
computation. This article outlines the basic idea of
topological quantum computation and reviews our
experiment.

2. Topological quantum computation

2.1 Non-Abelian quasiparticles

Fundamental particles in nature are classified as
either fermions or bosons according to how their
wave function changes sign with the interchange of
two identical particles. Taking the most familiar
examples: electrons are fermions and photons are
bosons. Interestingly, the behavior of a system con-
sisting of many particles interacting with each other
is often well understood by using the notion of quasi-
particles—elementary excitations behaving like par-
ticles but with properties different from the parent
particles that support the quasiparticle excitations.
Examples include holes in a semiconductor and pho-
nons in a crystal lattice. Quasiparticles are also clas-
sified according to their behavior upon quasiparticle
exchange in terms of whether more than one quasi-
particle can be created at the same location. Holes are
fermions and phonons are bosons.

Intriguingly, in a two-dimensional space, the statis-
tical properties of quasiparticles are no longer
restricted to the fermion/boson dichotomy. For a spe-
cific class of quasiparticles termed anyons, the
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exchange of two quasiparticles adds a complex phase
0 to their wave function, through multiplication by a
factor ¢ instead of =1 for ordinary fermions (-1) or
bosons (+1) [20], [21]. The generosity of nature in
allowing the existence of such exotic quasiparticles
comes as a surprise, but they are not very different
from fermions or bosons in that the exchange of these
quasiparticles does not alter the state itself. That is,
the phase of the wave function acquired after
(quasi)particle exchange is factored out by a mea-
surement. Alternatively, it can be said that they are all
Abelian, meaning that successive (quasi)particle
exchanges in a series are commutative; i.e., the result
is independent of the order of (quasi)particle
exchanges.

In topological quantum computation, quasiparticles
of yet another kind with exceedingly unusual proper-
ties are relevant. For these quasiparticles, dubbed
non-Abelian quasiparticles or non-Abelian anyons,
[11], [12], [22] quasiparticle exchange does alter the
state; it transforms the state from one of several
degenerate ground states to another. Such an opera-
tion can be described by a unitary transformation, so
it can form the basis for quantum logic gates. A nec-
essary condition for such quasiparticle exchange to
be a nontrivial unitary transformation is that the
ground state is degenerate. In the simplest example, a
system containing two quasiparticles should have a
degeneracy of 2, which then form a qubit. When the
system has 2n quasiparticles, there is a 2"-!-dimen-
sional space of degenerate states, which can be
viewed as n — 1 qubits [11]. Table 1 summarizes the
classification of (quasi)particles and gives examples
of them.

2.2 Topological quantum computation

The ground state of a system containing 2n non-
Abelian quasiparticles has a 2"!-dimensional space
of degenerate states, which serves as n — 1 qubits.
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Fig. 1. Schematic illustrations of quasiparticle exchanges and topological quantum computation. (a) Basic operations (o1
and 62) on a system containing three quasiparticles. Top: illustrations of the temporal evolution of the system from
the initial state i to the final state y1(2) = o1¢2)yi. Bottom: diagrammatic representations of the quasiparticle exchange
operations. (b) Example of logic gate operations consisting of the basic operations 61 and 62 shown in (a) and their

inverses 617 and oo™

Topological quantum computation exploits the uni-
tary transformation of a state that accompanies an
exchange of two non-Abelian quasiparticles as a
basis for quantum logic gates. The result of the calcu-
lation depends solely on the order of the quasiparticle
exchanges and does not depend on the details of the
quasiparticles’ trajectories. This unique property
makes topological quantum computation immune to
errors. By using a (2 + 1)-dimensional space-time
representation, we can express quasiparticle trajecto-
ries as world lines and express quasiparticle exchange
as the braiding of two world lines around each other.
An example is schematically illustrated in Fig. 1(a).
Two of three quasiparticles confined to a two-dimen-
sional plane are manipulated in such a way that they
exchange positions via relative motion in the counter-
clockwise direction. The thick solid lines that trace
the position of the quasiparticles in this space-time
representation form the quasiparticles’ world lines.
The quantum information is encoded in the braid’s
topology, that is, the way the world lines are braided.
Similar to a braided cord or hair, which can be loos-
ened but not undone, the quantum information is not
affected when the quasiparticle trajectories are local-
ly perturbed. The quantum information is thus said to
be topologically protected. Figure 1(b) shows an
example of logic gate operations consisting of the
basic operations shown in Fig. 1(a) and their invers-
es.

3. v=5/2 FQH state

3.1 Quasiparticles in FQH states

A prime candidate for a physical system expected
to host non-Abelian quasiparticles is an exotic state
of a two-dimensional electron system (2DES), called
the v = 5/2 FQH state [15]. This state emerges in a
pristine semiconductor heterostructure under extreme
conditions of millikelvin temperature and high mag-
netic field of several tesla. FQH effects are character-
ized by the quantization of Hall resistance that occurs
when the applied field B and the electron density n
take particular ratios [23]. Hall resistance Ry, is usu-
ally related to n and B as Ry, = B/ne, where e is the
elementary charge. As a consequence of electron-
electron interaction, an energy gap forms at the Fermi
level for particular values of B/n, around which Ry, is
pinned at a constant value over a finite range of n and
B [24]. The energy gap also leads to the vanishing of
longitudinal resistance Ry.

Because of the energy gap that forms at particular
values of B/n, the electron system tries to preserve the
same B/n ratio to minimize the interaction energy
when B or n is slightly detuned. The resultant mis-
match is accommodated by introducing point defects
around which the local electron density is higher or
lower than in the surrounding area. These point
defects, which carry electric charge and behave like
charged particles, are quasiparticles in FQH systems
[24]. FQH quasiparticles have been shown to have a
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fraction of the electron charge [25], [26] and are
believed to be anyons [21]. Their properties, includ-
ing their charge and statistics, are derived from the
properties of the FQH state hosting them. The FQH
state that emerges at v = 5/2, where v = (h/e)n/B (h:
Planck’s constant), is believed to have the distinctive
property that its quasiparticles are non-Abelian [18].

3.2 Theoretical models for the v = 5/2 state

The v = 5/2 FQH state [15], [16] and its particle-
hole counterpart v = 7/2 are the only FQH states with
even-denominator v observed in a single-layer 2DES.
Unlike other FQH states with odd-denominator v, the
exact mechanism responsible for the energy gap for-
mation at v = 5/2 has not yet been established. In the
standard theory of FQH effects [24], [27], [28], the
fermionic nature of electrons requires v to have an
odd denominator. Thus, the breaking of the odd-
denominator rule suggests a paired state of fermions
[19], [29]. Various theoretical models have been pro-
posed and examined [18], [19], [29]-[36], including
both those with non-Abelian statistics and those with
Abelian statistics.

Experiments reported thus far have neither demon-
strated the non-Abelian nature of v = 5/2 quasiparti-
cles nor pinned down precisely which theoretical
model correctly describes the v = 5/2 ground state.
The quasiparticle charge of e/4 observed in shot noise
[37], [38] and local compressibility [39] measure-
ments indicates that the v = 5/2 state is indeed a
paired state, but does not discriminate among differ-
ent types of paired states which all have charge-e/4
quasiparticles. Notably, quasiparticle tunneling
between FQH edges through a narrow constriction
[40], [41] has allowed the screening of different
model wave functions through detailed comparison
with theory. However, the likely candidates that
emerged through these experiments include an unde-
sirable Abelian wave function.

3.3 Spin polarization of the v = 5/2 state

Most theories of topological quantum computation
using the v = 5/2 state as a platform to manipulate
non-Abelian quasiparticles [11], [42] are based on the
premise that the state is described by the wave func-
tion proposed by Moore and Read [18], which is
considered to host non-Abelian quasiparticles. An
important feature of the Moore-Read theory is that it
assumes that all the electrons have their spins—an
internal degree of freedom of electrons making them
behave like tiny magnets—aligned along the same
direction. Numerical studies have shown that the
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ground state at v = 5/2 is spin polarized [43]-[45].
However, experiments reported thus far have indi-
cated conflicting results for the spin polarization of
the v = 5/2 state [46], [47]. The addition of an in-
plane magnetic field to increase the spin-splitting
energy is known to weaken the v = 5/2 state [48],
[49], which hinted at an unpolarized or only partially
polarized state. On the other hand, under a perpen-
dicular magnetic field, the v = 5/2 state persists over
a wide range of magnetic field, even up to 10 T [50],
suggesting full polarization. Recent optical measure-
ments using photoluminescence [51] and inelastic
light scattering [52] indicated an unpolarized state or
an inhomogeneous state consisting of unpolarized or
partially polarized domains, respectively. It is there-
fore of paramount importance to determine the spin
polarization with a high level of confidence.

4. Highly sensitive resistively detected
NMR measurements

4.1 NMR

NMR spectroscopy is one of the most powerful and
sophisticated analytical tools for investigating the
electronic and structural properties of matter. It
exploits the resonant absorption of electromagnetic
waves by nuclei placed in a strong magnetic field.
When the electron system surrounding the nuclei has
non-zero spin polarization, the hyperfine interaction
between the electron spins and the nuclear spins acts
as an effective magnetic field for the nuclei: this field
shifts the nuclear resonance frequency by a small
amount (Knight shift) proportional to the electron
spin polarization. Thus, the electron spin polarization
can be deduced by measuring the Knight shift of
nuclei placed in contact with a 2DES. All three
nuclides, %°Ga, 7'Ga, ’As, constituting the GaAs
quantum well, where a 2DES resides, have nuclear
spin I = 3/2 and can consequently serve as NMR
probes.

The challenge in applying NMR to 2DESs is the
low signal level resulting from the small number of
nuclei in contact with the 2DES and the overwhelm-
ing background coming from the thick substrate.
Resistively detected NMR (RD-NMR) [53], [54] pro-
vides a way to overcome these issues of sensitivity
and selectivity, thereby allowing us to perform NMR
on a single sheet of a 2DES. Instead of probing induc-
tive signals via a pickup coil or directly measuring the
absorption, in RD-NMR we measure the change in
the electrical resistance of the sample that occurs
when the frequency of the applied radio-frequency
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Fig. 2. (a) Experimental setup and (b) measurement sequence of resistively detected nuclear magnetic resonance.

(rf) wave matches the resonance frequency of the
nuclei. In return for its high sensitivity, the conven-
tional RD-NMR has the drawback of being applicable
only under a particular set of conditions such that the
electron system has measurable finite electrical resis-
tance and is sensitive to a tiny change in the elec-
tronic Zeeman energy. The former implies that the
method is not applicable to a well-developed quan-
tum Hall state, where the sample’s resistance expo-
nentially vanishes at low temperatures; the latter
condition is necessary because resistive detection
relies on the hyperfine coupling between electron
spins and nuclear spins, which acts as an effective
magnetic field modifying the electronic Zeeman
energy.

4.2 Sample and method

The sample used in our study was a 27-nm-wide
GaAs quantum well with Alg25Gag.75As barriers
grown by molecular beam epitaxy. The structure was
doped with Si on one side (front) of the quantum well
at a setback distance of 90 nm, which provided the
2DES with density n = 1.55 x 10'! cm™? and mobility
u=5.8 x 105 cm?/Vs in the as-grown condition. The
sample was processed into a 100-um-wide Hall-bar
device. A degenerately Si-doped GaAs buffer layer
1 um below the 2DES served as a back gate [55],
which allowed us to tune the electron density n over
a wide range: from 0.5 x 10! cm? to 4.2 x 10'! cm™.
The mobility exceeded 1.0 x 107 cm?/Vs for n >2.8 x
10" ¢cm, reaching a maximum value of 1.15 x 107
cm?/Vs at around n = 3.9 x 10!! cm™. To observe a
well-developed v = 5/2 state, it is essential to control

the disorder potential due to the remote ionized impu-
rities in the Si doping layer. Details of the sample
optimization are given in [56].

Our measurement setup is schematically shown in
Fig. 2(a). A Hall-bar device mounted on a DIP (dual
inline package) chip carrier is cooled in the mixing
chamber of a dilution refrigerator with a base tem-
perature of 10 mK. A three-turn coil is wound around
the sample and connected to an rf generator. Electri-
cal measurements are performed by driving a low-
frequency (17 Hz) ac current Iy through the sample
and measuring the voltages V. and Vy, that appear in
the longitudinal and transverse directions using lock-
in amplifiers. The longitudinal and Hall resistances
are obtained as Ry = Viw/lsa and Ry = Viy/lsa.

Our measurement sequence consists of three steps,
i) to iii), as schematically shown in Fig. 2(b) [17].
The salient feature of our measurement scheme is that
we exploit an electronic state (designated by filling
factor Vieaq) that is different from the electronic state
of interest (designated by filling factor v) to read out
the change in R, that results from the rf irradiation on
the state v. As shown in Fig. 2(b), this is done by
switching the gate voltage V, at a fixed magnetic field
B while alternately turning on and off the current and
the rf wave [57]. Our signal is the difference (AR =
RV - R.) in Ry, measured in periods 1) and iii),
right before and after the period ii). By repeating this
sequence for different frequencies, we obtain a reso-
nance spectrum. It is important to note that, although
we measure R of the state Vread, the spectral informa-
tion contained in the resultant NMR spectrum reflects
only the electronic properties of the state v. It is also
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important to note that while the state Viead needs to
satisfy the conditions required for conventional RD-
NMR, the state v does not. This eliminates the restric-
tions imposed on conventional RD-NMR, allowing
RD-NMR to be performed for any electronic state
accessible via gate voltage. Specifically, we used Vread
= 0.59; in this range of filling factor, the electronic
system is very sensitive to a small change in the Zee-
man energy [58], [59]. Below, the filling factor v
refers exclusively to the value during step ii).

4.3 Experimental results

R,x and R,y of our sample as a function of magnetic
field B are shown in Fig. 3. Fractional quantum Hall
effects at Landau-level filling factor v = 8/3, 5/2, and
7/3 are manifested as plateaus in R,y and minima in
R.,, indicating high sample quality. The RD-NMR
spectra of 7>As nuclei measured at B = 6.4 T are
shown in Fig. 4. As shown in the inset, the magnetic
field splits the energy levels of 7As nuclear spins I =
3/2 into four levels with I; = +3/2 and +1/2. Here, we
focus on the transition between I; = 1/2 and —-1/2.
(Other transitions, which are split off by quadrupole
interactions, are outside the frequency range shown in
the figure.) In Fig. 4, spectra taken at three different
filling factors v = 2, 5/2, and 5/3 are shown. As
explained below, the spectra for the v = 2 and 5/3
states, whose spin polarizations are known, are neces-
sary to deduce the Knight shift at v = 5/2 and convert
it into spin polarization.

The electron configurations at these filling factors
are schematically shown in Fig. 5. When a 2DES is
subjected to a strong perpendicular magnetic field B,
the cyclotron motion of electrons is quantized and
their energy spectrum splits into a set of equally
spaced discrete levels (Landau levels) designated by
the orbital quantum number N (= 0, 1, 2, ...), with
energy separation /i, where ¢ = eB/m” is the cyclo-
tron frequency (m": effective mass). Each Landau
level is further split into spin-up (T) and spin-down
(1) levels separated by the Zeeman energy Ez =
|g|upB, where ug = efi/2m, is the Bohr magneton (i,
electron mass in vacuum) and g is the g-factor. The
ratio of the Zeeman energy to the Landau level sepa-
ration (m'/mc)*|g|/2, which is unity for electrons in
vacuum, is significantly reduced in GaAs, by a factor
of ~70 owing to the small effective mass m* = 0.067m,
and the small g-factor (g = —0.44).

Each spin-split Landau level has a degeneracy of ng
= eB/h, so that Landau-level filling factor v, defined
as v = nh/eB, represents the number of occupied lev-
els. The electron configurations for Landau-level
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Fig. 3. Magnetotransport properties of the sample used for
the resistively detected nuclear magnetic resonance
measurements.

AR,

Frequency (MHz)

Fig. 4. Resistively detected nuclear magnetic resonance
spectra of 7®As nuclei taken at B = 6.4 T. The top,
middle, and bottom panels show spectra taken at
Landau-level filling factor v = 2, 5/2, and 5/3. The
thick solid lines show the fitting based on model
calculations. The inset shows the nuclear spin
levels.
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Fig. 5. Schematic illustrations of energy level splitting and electron configurations in a high magnetic field at different
filling factors. Note that the energy splitting is not to scale.

filling factor v =2, 5/2, and 5/3 are shown schemati-
cally in Fig. 5 with the simplistic model that each
spin-split Landau level can accommodate only six
electrons. The electrons enclosed by the dashed lines
have equal numbers of up and down spins, so they do
not contribute to the net spin polarization.

At v =2, the two lowest levels, (N =0, T) and (N =
0, \), are fully occupied with equal numbers of spin-
up and spin-down electrons, so the net spin polariza-
tion is zero. Thus, the peak position of the RD-NMR
spectrum taken at v = 2 marks the bare resonance
frequency of the 7As nuclei without a Knight shift.

Atv =5/2, the N =0 Landau levels are fully occu-
pied with equal numbers of spin-up and spin-down
electrons, so only those electrons in the N = 1 Landau
level contribute to the spin polarization and hence to
the Knight shift. The resonance spectrum for v = 5/2
appears in the frequency range lower than the reso-
nance frequency at v = 2. The Knight shift measured
from peak to peak is about 12 kHz. The finite Knight
shift observed for v = 5/2 clearly indicates that the
electrons in the N = 1 Landau level forming the v =
5/2 FQH state have non-zero spin polarization.

To convert the measured Knight shift into spin
polarization, we need a control spectrum for a state
with known (non-zero) polarization. For this purpose,
we use the spectrum at v = 5/3. As schematically
shown in Fig. 5, 5/3 filling of electrons is equivalent
to 1/3 filling of holes in the N = 0 Landau level. Since
the v = 1/3 state is fully polarized, the v = 5/3 state is

as well [60], which implies the electron configuration
shown in Fig. 5. Note that we accessed different val-
ues of v by changing the number of electrons while
keeping B constant. Thus, the ratio of the number of
electrons that contribute to spin polarization in the v
= 5/2 and 5/3 states is 3:2 if the v = 5/2 state is fully
polarized, and this is indeed what we observed. To
determine the spin polarization more accurately, we
fitted the measured spectra by taking into account the
local electron density that varies along the direction
normal to the 2D plane (solid lines in the figure). The
simulation reproduces the observed spectral shape
and confirms that the v = 5/2 FQH state is fully polar-
ized.

5. Concluding remarks

Our NMR experiments have demonstrated maxi-
mal spin polarization for the v = 5/2 FQH state. These
measurements are consistent with the Moore-Read
theory, which predicts the existence of non-Abelian
quasiparticles [18]. Most importantly, with our
results, the unpolarized (331) state [34], which had
been the most likely Abelian contender [40], [41],
[11], can be unambiguously ruled out, thus lending
strong support to the v = 5/2 state being non-Abelian.
We must note that our measurements probe the
ground-state property of the system at v = 5/2, but not
that of its quasiparticles. Thus, the exciting prospect
of topologically protected quantum operations using
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the v = 5/2 FQH state awaits direct experimental
demonstration of the quasiparticles’ non-Abelian
nature. One candidate is quasiparticle interference
experiments [61]-[65].
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