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1.   Introduction

Quantum computers are expected to possess com-
putational capabilities far exceeding those of conven-
tional computers. Their immense computing power 
stems from quantum parallelism. The classical, or 
digital, bit used by conventional computers can take 
only one value at a time: either 0 or �. On the other 
hand, the qubit—the quantum analog of a bit—can 
encode any superposition of two quantum states |0〉 
and |�〉. The state of a system comprising n qubits is 
thus described by a vector that spans an entire 2n-
dimensional space referred to as Hilbert space. Cal-
culations are performed by executing a series of gate 
operations that transforms the state of the qubits and 
the result is read out by measuring their final state. 
Quantum parallelism arises because the time evolu-
tion of the qubits follows many different trajectories 
in the huge Hilbert space in parallel until the final 
state is projected by a measurement. During quantum 
computation, errors can occur just as they can in con-
ventional computers, but the errors in quantum com-
putation have a much greater impact and are a major 
obstacle to building a practical quantum computer. 
Errors can be induced by both intentional logic gate 
operations and unintentional interactions with the 
environment. For example, a gate operation intended 
to rotate a qubit by 90° may actually produce a 90.�° 
rotation. Likewise, uncontrolled interactions with the 
environment can cause the state to evolve in an unin-

tended way. Fortunately, error correction is possible 
for quantum computers; it is done by representing 
information redundantly so that errors can be detect-
ed without measuring the information, which would 
destroy it [�]–[4]. However, information redundancy 
inevitably implies a corresponding increase in the 
number of qubits required to implement the same 
algorithm. Furthermore, there is a threshold for the 
error rate above which error correction is no longer 
possible [5]–[8]; this imposes a stringent requirement 
on the admissible error rate.

Recently, a totally new architecture for quantum 
computation with an exceedingly low error rate has 
been proposed and it has attracted interest. The archi-
tecture, called topological quantum computation 
[9]–[�4], exploits quasiparticles, which are elemen-
tary excitations of a many-particle system that behave 
like particles. However, the quasiparticles that can be 
used are restricted to those belonging to a specific 
class called non-Abelian quasiparticles or non-Abe-
lian anyons, which behave distinctly differently from 
fundamental particles in nature. A state containing 
such quasiparticles is transformed into a different 
state distinguishable from the initial one when two 
quasiparticles are moved so that they exchange posi-
tions. However, topological quantum computation is 
still only a theoretical possibility: it is hypothetical in 
that no experimental evidence has yet been found for 
the existence of non-Abelian quasiparticles in a real 
physical system. A prime candidate for a physical 
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system that is expected to host such quasiparticles is 
the ν = 5/2 fractional quantum Hall (FQH) state [�5], 
[�6], an exotic electronic state that emerges in a pris-
tine semiconductor heterostructure at millikelvin 
temperatures (ν: filling factor); however, its exact 
nature is not yet fully understood. My colleagues and 
I have recently performed nuclear magnetic reso-
nance (NMR) measurements on the ν = 5/2 state and 
unraveled its nature [�7]. The experimental results 
support the theory [�8], [�9] predicting that the state 
will have properties suitable for error-free quantum 
computation. This article outlines the basic idea of 
topological quantum computation and reviews our 
experiment.

2.   Topological quantum computation

2.1   Non-Abelian quasiparticles
Fundamental particles in nature are classified as 

either fermions or bosons according to how their 
wave function changes sign with the interchange of 
two identical particles. Taking the most familiar 
examples: electrons are fermions and photons are 
bosons. Interestingly, the behavior of a system con-
sisting of many particles interacting with each other 
is often well understood by using the notion of quasi-
particles—elementary excitations behaving like par-
ticles but with properties different from the parent 
particles that support the quasiparticle excitations. 
Examples include holes in a semiconductor and pho-
nons in a crystal lattice. Quasiparticles are also clas-
sified according to their behavior upon quasiparticle 
exchange in terms of whether more than one quasi-
particle can be created at the same location. Holes are 
fermions and phonons are bosons. 

Intriguingly, in a two-dimensional space, the statis-
tical properties of quasiparticles are no longer 
restricted to the fermion/boson dichotomy. For a spe-
cific class of quasiparticles termed anyons, the 

exchange of two quasiparticles adds a complex phase 
φ to their wave function, through multiplication by a 
factor eiφ instead of ±� for ordinary fermions (-�) or 
bosons (+�) [20], [2�]. The generosity of nature in 
allowing the existence of such exotic quasiparticles 
comes as a surprise, but they are not very different 
from fermions or bosons in that the exchange of these 
quasiparticles does not alter the state itself. That is, 
the phase of the wave function acquired after 
(quasi)particle exchange is factored out by a mea-
surement. Alternatively, it can be said that they are all 
Abelian, meaning that successive (quasi)particle 
exchanges in a series are commutative; i.e., the result 
is independent of the order of (quasi)particle 
exchanges.

In topological quantum computation, quasiparticles 
of yet another kind with exceedingly unusual proper-
ties are relevant. For these quasiparticles, dubbed 
non-Abelian quasiparticles or non-Abelian anyons, 
[��], [�2], [22] quasiparticle exchange does alter the 
state; it transforms the state from one of several 
degenerate ground states to another. Such an opera-
tion can be described by a unitary transformation, so 
it can form the basis for quantum logic gates. A nec-
essary condition for such quasiparticle exchange to 
be a nontrivial unitary transformation is that the 
ground state is degenerate. In the simplest example, a 
system containing two quasiparticles should have a 
degeneracy of 2, which then form a qubit. When the 
system has 2n quasiparticles, there is a 2n-�-dimen-
sional space of degenerate states, which can be 
viewed as n − � qubits [��]. Table 1 summarizes the 
classification of (quasi)particles and gives examples 
of them.

2.2   Topological quantum computation
The ground state of a system containing 2n non-

Abelian quasiparticles has a 2n-�-dimensional space 
of degenerate states, which serves as n − � qubits. 

Type

Fermion

Boson

Anyon 
(only in two dimensions)

Particles

Fundamental
particles

Electron Proton, neutron

Helium atomPhoton

Composite
particles

Quasiparticles

Hole

Phonon Abelian

Non-Abelian

1/3 quasiparticle

(5/2 quasiparticle)

Statistics

Table 1.   Types of (quasi)particles and examples.
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Topological quantum computation exploits the uni-
tary transformation of a state that accompanies an 
exchange of two non-Abelian quasiparticles as a 
basis for quantum logic gates. The result of the calcu-
lation depends solely on the order of the quasiparticle 
exchanges and does not depend on the details of the 
quasiparticles’ trajectories. This unique property 
makes topological quantum computation immune to 
errors. By using a (2 + �)-dimensional space-time 
representation, we can express quasiparticle trajecto-
ries as world lines and express quasiparticle exchange 
as the braiding of two world lines around each other. 
An example is schematically illustrated in Fig. 1(a). 
Two of three quasiparticles confined to a two-dimen-
sional plane are manipulated in such a way that they 
exchange positions via relative motion in the counter-
clockwise direction. The thick solid lines that trace 
the position of the quasiparticles in this space-time 
representation form the quasiparticles’ world lines. 
The quantum information is encoded in the braid’s 
topology, that is, the way the world lines are braided. 
Similar to a braided cord or hair, which can be loos-
ened but not undone, the quantum information is not 
affected when the quasiparticle trajectories are local-
ly perturbed. The quantum information is thus said to 
be topologically protected. Figure 1(b) shows an 
example of logic gate operations consisting of the 
basic operations shown in Fig. �(a) and their invers-
es.

3.   ν = 5/2 FQH state

3.1   Quasiparticles in FQH states
A prime candidate for a physical system expected 

to host non-Abelian quasiparticles is an exotic state 
of a two-dimensional electron system (2DES), called 
the ν = 5/2 FQH state [�5]. This state emerges in a 
pristine semiconductor heterostructure under extreme 
conditions of millikelvin temperature and high mag-
netic field of several tesla. FQH effects are character-
ized by the quantization of Hall resistance that occurs 
when the applied field B and the electron density n 
take particular ratios [2�]. Hall resistance Rxy is usu-
ally related to n and B as Rxy = B/ne, where e is the 
elementary charge. As a consequence of electron-
electron interaction, an energy gap forms at the Fermi 
level for particular values of B/n, around which Rxy is 
pinned at a constant value over a finite range of n and 
B [24]. The energy gap also leads to the vanishing of 
longitudinal resistance Rxx.

Because of the energy gap that forms at particular 
values of B/n, the electron system tries to preserve the 
same B/n ratio to minimize the interaction energy 
when B or n is slightly detuned. The resultant mis-
match is accommodated by introducing point defects 
around which the local electron density is higher or 
lower than in the surrounding area. These point 
defects, which carry electric charge and behave like 
charged particles, are quasiparticles in FQH systems 
[24]. FQH quasiparticles have been shown to have a 

Time Time

σ1

σ1

σ1

σ1

σ2 σ2

σ2
–1

σ2
–1

Ψ1 Ψ2

ΨiΨi

(b)(a)

Fig. 1.    Schematic illustrations of quasiparticle exchanges and topological quantum computation. (a) Basic operations (σ1 
and σ2) on a system containing three quasiparticles. Top: illustrations of the temporal evolution of the system from 
the initial state ψi to the final state ψ1(2) = σ1(2)ψi. Bottom: diagrammatic representations of the quasiparticle exchange 
operations. (b) Example of logic gate operations consisting of the basic operations σ1 and σ2 shown in (a) and their 
inverses σ1

-1 and σ2
-1.
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fraction of the electron charge [25], [26] and are 
believed to be anyons [2�]. Their properties, includ-
ing their charge and statistics, are derived from the 
properties of the FQH state hosting them. The FQH 
state that emerges at ν = 5/2, where ν = (h/e)n/B (h: 
Planck’s constant), is believed to have the distinctive 
property that its quasiparticles are non-Abelian [�8].

3.2   Theoretical models for the ν = 5/2 state
The ν = 5/2 FQH state [�5], [�6] and its particle-

hole counterpart ν = 7/2 are the only FQH states with 
even-denominator ν observed in a single-layer 2DES. 
Unlike other FQH states with odd-denominator ν, the 
exact mechanism responsible for the energy gap for-
mation at ν = 5/2 has not yet been established. In the 
standard theory of FQH effects [24], [27], [28], the 
fermionic nature of electrons requires ν to have an 
odd denominator. Thus, the breaking of the odd-
denominator rule suggests a paired state of fermions 
[�9], [29]. Various theoretical models have been pro-
posed and examined [�8], [�9], [29]–[�6], including 
both those with non-Abelian statistics and those with 
Abelian statistics.

Experiments reported thus far have neither demon-
strated the non-Abelian nature of ν = 5/2 quasiparti-
cles nor pinned down precisely which theoretical 
model correctly describes the ν = 5/2 ground state. 
The quasiparticle charge of e/4 observed in shot noise 
[�7], [�8] and local compressibility [�9] measure-
ments indicates that the ν = 5/2 state is indeed a 
paired state, but does not discriminate among differ-
ent types of paired states which all have charge-e/4 
quasiparticles. Notably, quasiparticle tunneling 
between FQH edges through a narrow constriction 
[40], [4�] has allowed the screening of different 
model wave functions through detailed comparison 
with theory. However, the likely candidates that 
emerged through these experiments include an unde-
sirable Abelian wave function.

3.3   Spin polarization of the ν = 5/2 state
Most theories of topological quantum computation 

using the ν = 5/2 state as a platform to manipulate 
non-Abelian quasiparticles [��], [42] are based on the 
premise that the state is described by the wave func-
tion proposed by Moore and Read [�8], which is 
considered to host non-Abelian quasiparticles. An 
important feature of the Moore-Read theory is that it 
assumes that all the electrons have their spins—an 
internal degree of freedom of electrons making them 
behave like tiny magnets—aligned along the same 
direction. Numerical studies have shown that the 

ground state at ν = 5/2 is spin polarized [4�]–[45]. 
However, experiments reported thus far have indi-
cated conflicting results for the spin polarization of 
the ν = 5/2 state [46], [47]. The addition of an in-
plane magnetic field to increase the spin-splitting 
energy is known to weaken the ν = 5/2 state [48], 
[49], which hinted at an unpolarized or only partially 
polarized state. On the other hand, under a perpen-
dicular magnetic field, the ν = 5/2 state persists over 
a wide range of magnetic field, even up to �0 T [50], 
suggesting full polarization. Recent optical measure-
ments using photoluminescence [5�] and inelastic 
light scattering [52] indicated an unpolarized state or 
an inhomogeneous state consisting of unpolarized or 
partially polarized domains, respectively. It is there-
fore of paramount importance to determine the spin 
polarization with a high level of confidence.

4.   Highly sensitive resistively detected 
NMR measurements

4.1   NMR
NMR spectroscopy is one of the most powerful and 

sophisticated analytical tools for investigating the 
electronic and structural properties of matter. It 
exploits the resonant absorption of electromagnetic 
waves by nuclei placed in a strong magnetic field. 
When the electron system surrounding the nuclei has 
non-zero spin polarization, the hyperfine interaction 
between the electron spins and the nuclear spins acts 
as an effective magnetic field for the nuclei: this field 
shifts the nuclear resonance frequency by a small 
amount (Knight shift) proportional to the electron 
spin polarization. Thus, the electron spin polarization 
can be deduced by measuring the Knight shift of 
nuclei placed in contact with a 2DES. All three 
nuclides, 69Ga, 7�Ga, 75As, constituting the GaAs 
quantum well, where a 2DES resides, have nuclear 
spin I = �/2 and can consequently serve as NMR 
probes.

The challenge in applying NMR to 2DESs is the 
low signal level resulting from the small number of 
nuclei in contact with the 2DES and the overwhelm-
ing background coming from the thick substrate. 
Resistively detected NMR (RD-NMR) [5�], [54] pro-
vides a way to overcome these issues of sensitivity 
and selectivity, thereby allowing us to perform NMR 
on a single sheet of a 2DES. Instead of probing induc-
tive signals via a pickup coil or directly measuring the 
absorption, in RD-NMR we measure the change in 
the electrical resistance of the sample that occurs 
when the frequency of the applied radio-frequency 
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(rf) wave matches the resonance frequency of the 
nuclei. In return for its high sensitivity, the conven-
tional RD-NMR has the drawback of being applicable 
only under a particular set of conditions such that the 
electron system has measurable finite electrical resis-
tance and is sensitive to a tiny change in the elec-
tronic Zeeman energy. The former implies that the 
method is not applicable to a well-developed quan-
tum Hall state, where the sample’s resistance expo-
nentially vanishes at low temperatures; the latter 
condition is necessary because resistive detection 
relies on the hyperfine coupling between electron 
spins and nuclear spins, which acts as an effective 
magnetic field modifying the electronic Zeeman 
energy. 

4.2   Sample and method
The sample used in our study was a 27-nm-wide 

GaAs quantum well with Al0.25Ga0.75As barriers 
grown by molecular beam epitaxy. The structure was 
doped with Si on one side (front) of the quantum well 
at a setback distance of 90 nm, which provided the 
2DES with density n = �.55 × �0�� cm-2 and mobility 
µ = 5.8 × �06 cm2/Vs in the as-grown condition. The 
sample was processed into a �00-µm-wide Hall-bar 
device. A degenerately Si-doped GaAs buffer layer 
� µm below the 2DES served as a back gate [55], 
which allowed us to tune the electron density n over 
a wide range: from 0.5 × �0�� cm-2 to 4.2 × �0�� cm-2. 
The mobility exceeded �.0 × �07 cm2/Vs for n >– 2.8 × 
�0�� cm-2, reaching a maximum value of �.�5 × �07 
cm2/Vs at around n = �.9 × �0�� cm-2. To observe a 
well-developed ν = 5/2 state, it is essential to control 

the disorder potential due to the remote ionized impu-
rities in the Si doping layer. Details of the sample 
optimization are given in [56].

Our measurement setup is schematically shown in 
Fig. 2(a). A Hall-bar device mounted on a DIP (dual 
inline package) chip carrier is cooled in the mixing 
chamber of a dilution refrigerator with a base tem-
perature of �0 mK. A three-turn coil is wound around 
the sample and connected to an rf generator. Electri-
cal measurements are performed by driving a low-
frequency (�7 Hz) ac current Isd through the sample 
and measuring the voltages Vxx and Vxy that appear in 
the longitudinal and transverse directions using lock-
in amplifiers. The longitudinal and Hall resistances 
are obtained as Rxx = Vxx/Isd and Rxy = Vxy/Isd.

Our measurement sequence consists of three steps, 
i) to iii), as schematically shown in Fig. 2(b) [�7]. 
The salient feature of our measurement scheme is that 
we exploit an electronic state (designated by filling 
factor νread) that is different from the electronic state 
of interest (designated by filling factor ν) to read out 
the change in Rxx that results from the rf irradiation on 
the state ν. As shown in Fig. 2(b), this is done by 
switching the gate voltage Vg at a fixed magnetic field 
B while alternately turning on and off the current and 
the rf wave [57]. Our signal is the difference (∆Rxx = 
Rxx

(i) - Rxx
(iii)) in Rxx measured in periods i) and iii), 

right before and after the period ii). By repeating this 
sequence for different frequencies, we obtain a reso-
nance spectrum. It is important to note that, although 
we measure Rxx of the state νread, the spectral informa-
tion contained in the resultant NMR spectrum reflects 
only the electronic properties of the state ν. It is also 
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Fig. 2.   (a) Experimental setup and (b) measurement sequence of resistively detected nuclear magnetic resonance.
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important to note that while the state νread needs to 
satisfy the conditions required for conventional RD-
NMR, the state ν does not. This eliminates the restric-
tions imposed on conventional RD-NMR, allowing 
RD-NMR to be performed for any electronic state 
accessible via gate voltage. Specifically, we used νread 
= 0.59; in this range of filling factor, the electronic 
system is very sensitive to a small change in the Zee-
man energy [58], [59]. Below, the filling factor ν 
refers exclusively to the value during step ii).

4.3   Experimental results
Rxx and Rxy of our sample as a function of magnetic 

field B are shown in Fig. 3. Fractional quantum Hall 
effects at Landau-level filling factor ν = 8/�, 5/2, and 
7/� are manifested as plateaus in Rxy and minima in 
Rxx, indicating high sample quality. The RD-NMR 
spectra of 75As nuclei measured at B = 6.4 T are 
shown in Fig. 4. As shown in the inset, the magnetic 
field splits the energy levels of 75As nuclear spins I = 
�/2 into four levels with Iz = ±�/2 and ±�/2. Here, we 
focus on the transition between Iz = �/2 and –�/2. 
(Other transitions, which are split off by quadrupole 
interactions, are outside the frequency range shown in 
the figure.) In Fig. 4, spectra taken at three different 
filling factors ν = 2, 5/2, and 5/� are shown. As 
explained below, the spectra for the ν = 2 and 5/� 
states, whose spin polarizations are known, are neces-
sary to deduce the Knight shift at ν = 5/2 and convert 
it into spin polarization.

The electron configurations at these filling factors 
are schematically shown in Fig. 5. When a 2DES is 
subjected to a strong perpendicular magnetic field B, 
the cyclotron motion of electrons is quantized and 
their energy spectrum splits into a set of equally 
spaced discrete levels (Landau levels) designated by 
the orbital quantum number N (= 0, �, 2, ...), with 
energy separation hωc, where ωc = eB/m* is the cyclo-
tron frequency (m*: effective mass). Each Landau 
level is further split into spin-up (↑) and spin-down 
(↓) levels separated by the Zeeman energy EZ = 
|g|µBB, where µB = eh/2me is the Bohr magneton (me: 
electron mass in vacuum) and g is the g-factor. The 
ratio of the Zeeman energy to the Landau level sepa-
ration (m*/me)•|g|/2, which is unity for electrons in 
vacuum, is significantly reduced in GaAs, by a factor 
of ~70 owing to the small effective mass m* = 0.067me 
and the small g-factor (g = –0.44).

Each spin-split Landau level has a degeneracy of nφ 
= eB/h, so that Landau-level filling factor ν, defined 
as ν = nh/eB, represents the number of occupied lev-
els. The electron configurations for Landau-level 
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Fig. 3.    Magnetotransport properties of the sample used for 
the resistively detected nuclear magnetic resonance 
measurements.
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filling factor ν = 2, 5/2, and 5/� are shown schemati-
cally in Fig. 5 with the simplistic model that each 
spin-split Landau level can accommodate only six 
electrons. The electrons enclosed by the dashed lines 
have equal numbers of up and down spins, so they do 
not contribute to the net spin polarization.

At ν = 2, the two lowest levels, (N = 0, ↑) and (N = 
0, ↓), are fully occupied with equal numbers of spin-
up and spin-down electrons, so the net spin polariza-
tion is zero. Thus, the peak position of the RD-NMR 
spectrum taken at ν = 2 marks the bare resonance 
frequency of the 75As nuclei without a Knight shift.

At ν = 5/2, the N = 0 Landau levels are fully occu-
pied with equal numbers of spin-up and spin-down 
electrons, so only those electrons in the N = � Landau 
level contribute to the spin polarization and hence to 
the Knight shift. The resonance spectrum for ν = 5/2 
appears in the frequency range lower than the reso-
nance frequency at ν = 2. The Knight shift measured 
from peak to peak is about �2 kHz. The finite Knight 
shift observed for ν = 5/2 clearly indicates that the 
electrons in the N = � Landau level forming the ν = 
5/2 FQH state have non-zero spin polarization. 

To convert the measured Knight shift into spin 
polarization, we need a control spectrum for a state 
with known (non-zero) polarization. For this purpose, 
we use the spectrum at ν = 5/�. As schematically 
shown in Fig. 5, 5/� filling of electrons is equivalent 
to �/� filling of holes in the N = 0 Landau level. Since 
the ν = �/� state is fully polarized, the ν = 5/� state is 

as well [60], which implies the electron configuration 
shown in Fig. 5. Note that we accessed different val-
ues of ν by changing the number of electrons while 
keeping B constant. Thus, the ratio of the number of 
electrons that contribute to spin polarization in the ν 
= 5/2 and 5/� states is �:2 if the ν = 5/2 state is fully 
polarized, and this is indeed what we observed. To 
determine the spin polarization more accurately, we 
fitted the measured spectra by taking into account the 
local electron density that varies along the direction 
normal to the 2D plane (solid lines in the figure). The 
simulation reproduces the observed spectral shape 
and confirms that the ν = 5/2 FQH state is fully polar-
ized.

5.   Concluding remarks

Our NMR experiments have demonstrated maxi-
mal spin polarization for the ν = 5/2 FQH state. These 
measurements are consistent with the Moore-Read 
theory, which predicts the existence of non-Abelian 
quasiparticles [�8]. Most importantly, with our 
results, the unpolarized (���) state [�4], which had 
been the most likely Abelian contender [40], [4�], 
[��], can be unambiguously ruled out, thus lending 
strong support to the ν = 5/2 state being non-Abelian. 
We must note that our measurements probe the 
ground-state property of the system at ν = 5/2, but not 
that of its quasiparticles. Thus, the exciting prospect 
of topologically protected quantum operations using 

ν = 2 ν = 5/2 ν = 5/3

N = 0

N = 1

N = 2

B = 0  High B 

Energy

Density of states

hωc

|g|µBB

Landau levels

Spin splitting

Fig. 5.    Schematic illustrations of energy level splitting and electron configurations in a high magnetic field at different 
filling factors. Note that the energy splitting is not to scale.
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the ν = 5/2 FQH state awaits direct experimental 
demonstration of the quasiparticles’ non-Abelian 
nature. One candidate is quasiparticle interference 
experiments [6�]–[65].
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