
� NTT Technical Review

1. Introduction

The amount of enterprise data has been dramati-
cally increasing, and such large-scale data is referred
to as big data. Many services and analytical applica-
tions based on big data have emerged, and users want
to obtain or mine the most recent and useful knowl-
edge from big data. Handling big data requires
advanced technology for data storage. In particular,
NoSQL (Not Only SQL; SQL: structured query lan-
guage) databases have attracted attention for big data
storage. NoSQL is designed specifically to manage
big data, a task for which commonly used relational
database management systems (RDBMSs) are not
well suited.

We describe the main features and characteristics of
NoSQL databases and report the results of a NoSQL
benchmark using MongoDB [�] as an example.

2. NoSQL

2.1 Features
The three main features of NoSQL databases are

scale-out, replication, and flexible data structure (Fig.
1). We explain these three features below.

Scale-out refers to achieving high performance by
using many general-purpose machines in a distributed
manner. Distributing the data over a large number of
machines enables scaling of the data set and distribu-
tion of the processing load. A common feature of
many NoSQL databases is that data is automatically
distributed to new machines when they are added to

the cluster, so the performance is also improved.
Scale-out is evaluated in terms of scalability and elas-
ticity.

Replication is the copying of data to achieve data
redundancy and load distribution. Even if data consis-
tency has been lost among the replicas, it is eventu-
ally achieved: this is known as eventual consistency.
Replication is evaluated in terms of consistency and
availability.

A flexible data structure means that there is no need
to define a structure as a database schema. Tradi-
tional RDBMSs require pre-defined schemas, and
redefining them carries a high cost. NoSQL, on the
other hand, does not require defined schemas, so
users can store data with various different structures
in the same database table. However, most NoSQL
databases do not support high-level query languages
such as SQL, which is used by RDBMSs, so products
that support either simple relational operations or
indexing have been released. This feature is evaluated
qualitatively.

2.2 Characteristics and benchmark system
Because NoSQL databases feature scale-out and

replication, a NoSQL benchmark should take scal-
ability, elasticity, consistency, and availability into
account as well as performance. We explain each
characteristic and describe the benchmarking soft-
ware design points concerning these characteristics.

Scalability indicates how the performance of a
NoSQL database cluster scales with the number of
physical machines. If performance improves as

Feature Articles: Platform Technologies for
Open Source Cloud Big Data

NoSQL Database Characteristics and
Benchmark System
Kota Tsuyuzaki and Makoto Onizuka

Abstract
The NTT Software Innovation Center has been researching and developing NoSQL (Not Only SQL;

SQL: structured query language) databases as storage platforms for big data. In this article, we discuss
the characteristics of NoSQL databases and their benchmark system. We also report the results of apply-
ing the benchmark to MongoDB, a typical example of a NoSQL database.

Vol. 10 No. 12 Dec. 2012 �

Feature Articles

machines are added to a NoSQL database cluster, we
can say that the NoSQL product has high scalability.
In scalability benchmarking with many physical
machines, the load generator, which benchmarks the
NoSQL database cluster, is often a bottleneck. An
effective approach for preventing this is to design
benchmark software as a distributed system running
on the cluster (Fig. 2).

Elasticity enables the addition of physical machines
to a cluster while the NoSQL database is running on
it. Elasticity benchmarking involves measuring the
impact of adding a physical machine to the NoSQL
database cluster. The benchmarking requires the
addition of a machine while the performance is being
measured. The impact of adding a physical machine
has been reported for NoSQL benchmarking with the
Yahoo! Cloud Serving Benchmark (YCSB) [�]. That
paper [�] also reported a performance instability
issue was arose during several hours of elasticity for
Cassandra, a NoSQL database product.

Consistency is a measure of the strength of data
integrity. The parameters used to evaluate it include
the number of replicas and the latency within the
cluster. The consistency benchmarking software must
check the consistency among replicas in an update-
heavy workload, so data management of that work-
load, in which data should be updated, is necessary.

The final characteristic, availability, refers to the
ability of the overall system to continue operating
during a network failure, called a network partition,
or a physical machine failure. High availability means
that the system can work without interruption and
without degraded performance, even when some
machines go down and the network is partitioned or
both. In general, network partitioning makes it diffi-
cult to ensure both consistency and availability at the
same time, so NoSQL databases are designed to pri-
oritize one or the other in operation. Measuring the
effect on performance in addition to that on operating
continuity is important in the index for availability as

Fig. 1. NoSQL database features and characteristics.

Compatible with various data formats: images (binary),
tweets, geographical data, etc.

Consistency:
Data replicas are identical.

Scale-out

Availability: When a machine goes
down, data can continue to be read
from replicas on other machines.

Elasticity:
 Machines can be added.

Scalability: Performance increases
as machines are added.

Flexible data structure

Pre-defined schema are not
needed; simple data access
models and languages are
supported product-by-product.

Replication

Replica data

� NTT Technical Review

Feature Articles

well as that for elasticity. The important points regard-
ing benchmark software are summarized below.
(�) It should be distributed and should generate an

appropriate load.
(�) It should add machines to the database cluster or

shut down machines automatically during
benchmark testing.

(�) The benchmark software should check data con-
sistency.

We present selected benchmark results obtained
using custom benchmark software based on YCSB,
which can automatically execute items (�) and (�).

3. Benchmarking evaluation

3.1 Benchmarking and evaluation of MongoDB
This benchmark test assumed a service in which

user data is continually increasing, such as blog arti-
cles in a social networking service (SNS). The target
software for the benchmarking was MongoDB, which
features scale-out, replication, and a flexible data
structure. Scalability is generally measured in the
benchmarking of NoSQL databases [�] and MongoDB
does not allow eventual consistency. Therefore, we
present the results for elasticity and availability,
which are particularly important when designing a
system such as the SNS described above, by using a
NoSQL database with data having those characteris-
tics.

The performance of MongoDB depends on whether

or not the entire data set resides in physical cache
memory; therefore, we used two data sets: a small
data set that could be fully stored in cache memory
and a large data set that was too large to fully reside
in cache memory, so data swapping was necessary.

3.2 Elasticity benchmark results
The results for elasticity are presented in Fig. 3,

where the horizontal axis is elapsed time from the
beginning of measurement and the vertical axis is
performance relative to the throughput for ideal scal-
ing from the addition of one machine. A physical
machine was added 600 seconds after the beginning
of measurement.

Comparing the results for the small and large data
sets in Figs. �(a) and (b), we can see that the perfor-
mance of MongoDB with the large data set became
unstable just after the machine was added and the
performance gradually decreased. This behavior was
caused by the increase in disk access during data
migration of the large data set. Since there was a large
reallocation load on the disks after the machine was
added, the NoSQL took a lot of time to complete the
data migration.

When the data set was small, as in Fig. �(a), the
impact of adding the physical machine ended after a
minute or two and performance then became stable
again. However, the throughput did not reach the
ideal value for adding a machine in the case of the
small data set. This indicates that the added machine

Fig. 2. Important points concerning benchmarking system configuration and benchmarking.

Add or stop machine

Benchmarking system

Benchmarking cluster Database cluster

(2) Benchmark software should add machines to
the database cluster or stop machines during

benchmark testing.

Concurrency control of
benchmarking software

(1) Benchmark software should be
distributed and generate an appropriate

load.

Local network

(3) Benchmark software should check
data consistency.

Benchmark

Vol. 10 No. 12 Dec. 2012 �

Feature Articles

was used inefficiently.

3.3 Availability benchmark results
The benchmark results for availability are presented

in Fig. 4. The horizontal axis is time and the vertical
axis is the measured throughput for when a machine
had gone down.

Comparing the results for the small and large data
sets in Figs. �(a) and (b), we see that, after a machine
was stopped, performance took longer to recover for
the large data set than for the small data set. The per-
formance for the large data set did not return to the
previous level, remaining at only about 70% of the
ideal performance. We believe that this was caused by
increased disk access for reading data on machines
that had replicas of data on the stopped machine. This
increase in disk access caused a bottleneck in the
entire system.

For the small data set in Fig. �(a), the decrease in
performance with the stopped machine was greater

than expected. We believe that this is because there
was almost no effect from the input/output load for
the small data set.

4. Concluding remarks

Our benchmark testing of MongoDB for elasticity
and availability revealed that data size has a signifi-
cant impact on database performance when the sys-
tem is extended or machines are taken off-line. How-
ever, these characteristics vary with the NoSQL
product. Therefore, when designing the system con-
figuration of actual systems that use NoSQL data-
bases, one should benchmark elasticity and availabil-
ity as well as performance and scalability. For
example, the trade-off with the impact on perfor-
mance and recovery time must be estimated and
reflected in the system design in terms of the number
of machines and the hardware configuration.

Our future work includes trying to improve the

(a) Small data set (b) Large data set

Timing of stopping a physical machine

4200 (s)360030001800600 240012000

Performance normalized to
predicted throughput after
a machine was stopped.

1.15

1.1

1.05

1

0.95
4200 (s)360030001800600 240012000

1.2

1

0.8

0.6

0.4

0.2

0

T
hr

ou
gh

pu
t

T
hr

ou
gh

pu
t

Elapsed time Elapsed time

Fig. 4. Effect on performance during NoSQL database availability benchmarking.

(a) Small data set (b) Large data set

Timing of adding a physical machine

4200(s)360030001800600 240012000

Performance normalized
to ideal throughput after
a machine was added

1.2

1

0.8

0.6

0.4

0.2

0
4200 (s)360030001800600 240012000

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

T
hr

ou
gh

pu
t

T
hr

ou
gh

pu
t

Elapsed time Elapsed time

Fig. 3. Effect of elasticity benchmarking process on NoSQL database performance.

� NTT Technical Review

Feature Articles

benchmarking of elasticity and availability to expand
the use of NoSQL for big data. We believe that tech-
niques for controlling the trade-off between perfor-
mance and features on the basis of such benchmark-
ing results will become more important in the future.
The NTT Software Innovation Center will continue
to engage in research and development of technology
for handling big data.

References

[�] MongoDB. http://www.mongodb.org/
[�] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” Proc. of the ACM
Symposium on Cloud Computing �0�0 (ACM SOCC �0�0), India-
napolis, IN, USA.

[�] T. Dory, “Comparing Scalable NOSQL Databases,”
 http://www.slideshare.net/ThibaultDory/comparing-nosql-databases-

benchmark
[�] J. Miyazaki and M. Onizuka, “Current trends and techniques on data

cloud,” the Information Processing Society of Japan, Vol. ��, No. 6,
pp. 68�–69�, �0�� (in Japanese).

Kota Tsuyuzaki
Distributed Computing Technology Project,

NTT Software Innovation Center.
He received the M.E. degree in information

science from Waseda University, Tokyo, in �0�0.
Since joining NTT in �0�0, he has been engaged
in R&D of NoSQL databases. As a result of
organizational changes in July �0��, he is now in
NTT Software Innovation Center.

Makoto Onizuka
Distinguished Technical Member, Distributed

Computing Technology Project, NTT Software
Innovation Center and Visiting Associate Profes-
sor at the Graduate School of Information Sys-
tems, University of Electro-Communications.

He received the Ph.D. degree in computer sci-
ence from Tokyo Institute of Technology in �007.
His primary research interests include systems
and algorithms for data-intensive cloud comput-
ing.

http://www.slideshare.net/ThibaultDory/comparing-nosql-databases-benchmark

