
� NTT Technical Review

1. Introduction

There is little doubt that data is of great value and
importance in databases, data mining, and other data-
centered applications. With the recent spread of net-
works, attention is being focused on the large quanti-
ties of a wide variety of data being generated and
transmitted as big data. This trend is accelerating [1]
as a result of advances in information and communi-
cations technology (ICT), which simplifies the col-
lection and analysis of big data.

Even now, there is a strong need to make new dis-
coveries and find patterns that were not noticed
before, by taking huge amounts of data in a certain
area that has been stockpiled, such as a dozen or so
years of clinical data, and analyzing it from all angles,
as one scenario in which big data is put to good use in
business. This trend is not limited to operations con-
fined to a specific area; it includes the possibility of
swiftly finding new business possibilities or synergis-
tic effects by focusing on relationships in big data
spanning different fields or specialist areas. We think
that this trend will expand into cross-domain big data
analysis in the future*1.

There are two major types of big data and tech-
niques for analyzing it.
(1)	� Stockpile type: Lumped high-speed analysis of

accumulated big data (batch processing)
(2)	� Stream type: Sequential high-speed analysis of

data stream being continuously generated with-
out accumulation (realtime processing)

With case (2) in particular, the ambiguity inherent
in the environment is creating a growing need to
make judgments and decisions on the basis of insuf-
ficient information.

In this article, we revisit Jubatus, a framework
intended for realtime stream-type big data analysis
that provides profound analysis ability by online
machine learning as added value. Jubatus was intro-
duced in the June 2012 issue of NTT Technical
Review [1]. That article focused on a key mechanism
called mix. In this article, after briefly reviewing
Jubatus, we describe the technical challenges and
goals that should be resolved and introduce our
design concept, open source community activities,

Jubatus in Action: Report on
Realtime Big Data Analysis by
Jubatus
Keitaro Horikawa, Yuzuru Kitayama, Satoshi Oda,
Hiroki Kumazaki, Jungyu Han, Hiroyuki Makino,
Masakuni Ishii, Koji Aoya, Min Luo, and
Shohei Uchikawa

Abstract
This article revisits Jubatus, a scalable distributed framework for profound realtime analysis of big

data that improves availability and reduces communication overheads among servers by using parallel
data processing and by loosely sharing intermediate results. After briefly reviewing Jubatus, it describes
the technical challenges and goals that should be resolved and introduces our design concept, open
source community activities, achievements to date, and future plans for expanding Jubatus.

*1	 Cross domain: Access to data spanning different domains.
	 http://en.wikipedia.org/wiki/Cross-domain_solution

Feature Articles: Platform Technologies for
Open Source Cloud Big Data

Vol. 10 No. 12 Dec. 2012 �

Feature Articles

achievements to date, and future plans for expanding
Jubatus.

2. Jubatus

2.1 Overview
Jubatus is a scalable distributed computing frame-

work for online machine learning. The origin of the
name is the Latin term for that agile animal the chee-
tah. It is pronounced “yu-ba-tus”. Developed jointly
by Preferred Infrastructure Corporation and NTT
Software Innovation Center, it is currently published
on websites as a Japan-originated big data open
source project [2]–[4].

The goal of Jubatus is to enable swift and profound
analysis of stream-type big data. One example of its
use is as a social media application for automatically
classifying the huge number of tweets*2 (over 8000
per second) generated all over the world. This pro-
cessing includes the three requirements: large vol-
ume, fast, and profound. In other words, it supports
natural language processing and automatic multicat-
egory classification, at high speed without lag, of a
data stream of 16 Mbit/s.

However, these three requirements basically have a
trade-off relationship and it is intrinsically difficult to
satisfy all of them simultaneously. Jubatus satisfies
both profound analysis and scalability. Here, pro-
found analysis is the automatic categorization of
unstructured information intended for human beings,
such as natural language. It can also replace human
labor for unclearly formulated processing work, such
as recommendation, prediction, and relationship dis-
covery. From the technical perspective, it involves
challenges in the areas of machine learning, artificial
intelligence, and pattern recognition.

On the other hand, scalability encompasses the
issues of (1) increases in processing requests and (2)
increases in data size. Issue (1) can be further divided
into throughput (volume of requests to be handled per
unit time) and response (response for each instance,
without lag). In general, batch processing focuses on
throughput while realtime processing focuses on
response. Approaches to issue (2) are either process-
ing the data without waiting or dividing and storing
it.

Jubatus answers the need for making prompt judg-
ments in situations exhibiting uncertainty and ambi-
guity. After our comprehensive investigation of the

design concept, under which information for judg-
ment is being collected continuously and decisions
are being made without lag, we separate the profound
analysis (functionality) from the scalability (non-
functionality). More specifically, a profound analysis
design likens the logic of online machine learning to
an engine or central processing unit (CPU), which
can be continuously upgraded as removable analysis
modules. A scalable design is seen as a common
infrastructure chassis or motherboard, which can be
scaled by installing analysis modules into the com-
mon framework. The ultimate goal of Jubatus is to
provide everyone with scalable machine learning.
Our policy is to provide a broadly easy-to-understand
online machine learning framework for big data that
is easy to use, with hardware that scales out over
inexpensive commodity servers to enable massively
parallel distributed processing and software that is
not restricted to a few data scientists, programmers,
and specialists.

2.2 Applicable areas
Google’s PageRank is well known as a technique

for calculating the importance of web pages from all
over the world [5]. Since website link structures are
updated comparatively slowly, batch analysis is suit-
able in this case. Social media such as Twitter tweets,
on the other hand, are characterized by having finer
granularity than the web, by having light content, by
having small chunks of data that are transmitted in
large numbers from a wider demographic than that of
web users, and by the immediacy of information
being vital. Through social media, we can analyze
how a broad user population reacts to changes and
events in the external environment and make effective
practical use of realtime analysis of stream-type big
data, with cases applied to business enterprises.

We have provided primary classifications of Twitter
information as an application of Jubatus. Since the
information representation is in natural language and
is presented with a limited number of characters,
expressions having distinctive omissions, abbrevia-
tions, coined words, jargon, and mannerisms were
included in the analysis subject matter. From the over
2000 tweets per second in the Japanese language
alone, it is difficult for humans themselves to extract
and organize useful information instantly by sight.
Therefore, general-purpose primary filters that pro-
vide major classifications and refining functions are
useful. Using the approximately 1600 companies
listed on the first section of the Tokyo Stock Exchange
as the classification categories, Jubatus speedily

*2	 Tweets: short messages sent using the popular social networking
service and microblogging service Twitter.

� NTT Technical Review

Feature Articles

classifies the 2000 tweets per second into their cor-
responding business categories and supplies informa-
tion to an analysis application. This implementation
uses an online machine learning technique called
Jubatus classifiers (multi-valued classification). We
used highly trustworthy published information, such
as Wikipedia, as training data and automatically con-
structed a learning model for classification. Unlike
item classification by keyword matching or related
words, we use online learning to update the vector
equations of separate planes that divide an n-dimen-
sional feature vector space*3 into a number of catego-
ries.

We can also expect the system to become smarter
on its own by continuing to incorporate big data from
outside, with the effect that even unknown words will
be classified appropriately. The categories for the
primary classification are not limited to businesses: it
is possible to broaden the application to countries,
local governments, municipalities, celebrities, prod-
ucts, and etc.

2.3 Architecture and functions
The design concept of Jubatus is outlined in Fig. 1.

As stated above, Jubatus is composed of a cluster of
machine learning engines and a high-speed frame-
work that supports them.

In contrast to previous machine learning engine
units, which usually handled small- to medium-scale
data and required batch processing and individual
development, Jubatus has a huge variety of engines
installed in a high-speed framework and a develop-
ment mechanism with common specifications for
high-speed big data processing with errors within a

permitted range tolerated [6]. June 2012 saw the
release of version 0.3 of Jubatus and we are planning
to augment the lineup of machine learning functions
and strengthen the support framework. The types of
machine learning that we currently support so far are
outlined in Table 1.

Jubatus will be useful for applications that require
speedy judgment. It is expected to be able to discover
and analyze original relationships among the data
volume from different domains.

2.4 Distributed processing architecture
The distributed processing architecture is shown in

detail in Fig. 2. The stream of big data flows from left
to right. Clients are configured of a number of user
processes and proxy processes.

The proxy processes relay clients’ requests to the
server processes, enabling the servers be transparent
to the user processes. User processes are implement-
ed by using the Jubatus client application program-
ming interface (API); they are written in a scripting
language or in a general programming language.

We appreciate the outside contributions from the
open source community, so we enabled the use of a
large variety of language bindings [7], such as
Python, Ruby, and Java. Communications between
proxy processes and server processes are based on
MessagePack [8] remote procedure calls (RPCs).
Non-block input/output enables more efficient com-
munications and synchronization control. The server
processes perform the training, prediction process-
ing, and learning model synchronization, which has
linearly increasing performance with the number of
servers. In addition, Zookeeper [9] processes manage
the cooperation between proxy and server processes,
the balancing between distributed servers, the moni-
toring of server state (alive/dead), and the selection of
new leaders.

Fig. 1. Outline of the design concept.

Data

Analysis
results

Classification

Data

Analysis
results

Regression

Data

Analysis
results

Recommendation

Machine learning engine
Development of

 high-speed framework

Classification Regression Recommendation

Stream-type big data

High-performance engine +
high-speed framework

Online execution of profound analysis

+

*3	 n-dimensional feature vector space: n is the number of words that
characterize the Japanese language. In this case, it is approxi-
mately 2000.

Vol. 10 No. 12 Dec. 2012 �

Feature Articles

The characteristics of Jubatus distributed process-
ing are compared with those of batch processing in
Table 2. For example, when there are 1000 distrib-

uted parallel processing servers, batch processing
(e.g., using Map-Reduce) means that the 1000 servers
all execute Map simultaneously, and then all of them

Server processes

Proxy processesUser processes

API

API

API

Big data
stream

ZooKeeper

mix
 (learning model
synchronization)

Fig. 2. Distributed processing architecture.

Table 2. Characteristics of Jubatus distributed processing.

Batch processing Jubatus

Processing capability Stockpile type: Lumped process with data accumulation Stream type: on-demand processing without data
accumulation

Running time Scheduled type: Start and end timing are defined. 24 hours per day, 7 days per week, i.e., non-stop

Table 1. Examples of functionalities for machine learning.

Supported machine learning engines Functionalities for machine learning

Classification

Regression

Recommendation

Statistics

Graph mining

Learning request
Classification request

Learning request
Analogy request

Update or deletion of row data (user ID/items)
Search for similar data
Figure out recommendation items

Update
Calculation of: sum, deviation, maximum & minimum, entropy, moment

Node creation, deletion, update, reference
Edge creation, deletion, update, reference
Centrality measures
Shortest path calculations between two nodes

� NTT Technical Review

Feature Articles

together execute Reduce to summarize the results. By
contrast, with Jubatus, each server repeats the learn-
ing and analysis autonomously.

In parallel processing among distributed servers,
one technique for satisfying both profound analysis
and scalability is mix processing [1], [6], [10]. This
processing can be regarded as resembling a group
study meeting for self-teaching and checking answers
(or called synchronization) with others. If all the
1000 servers synchronize their answers after every
single learning or analysis task, then overall there will
be a huge drop in processing speed due to the waiting
time, but a moderate frequency of synchronization
may enable the data learning and analysis without
any decrease in overall performance.

Let us introduce mix processing and the unified
update-mix-analyze (UMA) interface.

-	� Update: Asynchronous execution of update-
related queries and additions or changes to big
data

-	� Mix: Loose sharing of intermediate analysis
results within the component servers

-	� Analyze: Abstraction interface that suggests the
execution of reference queries and analysis
requests from clients.

The aim is to implement a common interface that is
independent of the analysis logic. In the future, we
will continue upgrading the machine learning engine,
but designing and maintaining an easy-to-understand
framework with consistent interfaces are also impor-

tant tasks.

3. Improvements in development efficiency

To improve the agility of development and ease the
burden on developers, a full range of designs and
tools is being provided in Jubatus.
(1)	 Feature vector conversion

Whatever the data, it is necessary to capture its fea-
ture vectors as the input format for machine learning.
Conversely, if feature vectorization is successful, the
machine learning algorithms only need to be pro-
cessed appropriately. We have provided a tool that
defines this important feature vectorization by means
of an outgoing settings file, without hard-coding it as
program logic.
(2)	 IDL and jenerator

In Jubatus version 0.01, any addition to the analysis
logic led to the need for manual editing and verifica-
tion of seven files every time. Therefore, we devised
a mechanism for automatically maintaining interface
consistency and localizing the interface alteration
work. We define the interface by using an interface
description language (IDL) file, and template skele-
tons of six files are generated automatically by a tool
called a jenerator (Fig. 3). As a result, approximately
3000 lines of code can be generated automatically by
using a 100-line definition file, and unification of the
source code maintenance work is also improved by
IDL. The meaning and usage of the API can be simply

Fig. 3. Automatic creation of template interface by IDL.

Automatic generation and guarantee of interface
consistency by the modifications of three files

Source file

Automatically
generated file

Jubakeeper Jubatus serverJubatus client

Header Header

Body
 (implementation) Body

 (implementation)
Body

 (implementation)

mpidl: MessagePack IDL

jenerator

jenerator

jenerator

mpidl

Common type declarations

Commands for
automatic generation

Header

IDL

RPC
definition

mpidl

RecommendationsStatisticsRegressionClassification

Vol. 10 No. 12 Dec. 2012 �

Feature Articles

understood just by reading the IDL file, which greatly
improves the development efficiency.

4. Performance evaluation

We verified the performance beforehand while
expanding the analysis logic. This evaluated the scal-
ability of Jubatus.
(1)	� Classification: We classified Twitter tweets on a

global scale (8000 per second) with two or three
commodity servers. An accuracy rate of 90% in
batch processing was achieved with data
obtained within 10 s. The quantity of training
data was not necessarily that large.

(2)	� Recommendations: The update frequency of
online shopping transactions can be over
100,000 times per second per server and it is
possible to produce recommendations for 30
million users within a response time of 0.1 s
(approximately ten times as fast as Mahout). We
also verified that the throughput (number of
registered data items per second) scales up lin-
early with increasing number of servers.

(3)	 Graph mining
-	� Addition of 100 million edges: by ten commod-

ity servers in parallel for 5 minutes
-	� Scalability in edge addition through an increase

in the number of servers: (1, 2, 4, 8) servers ==>

(3, 6, 13, 25) at 10,000 edges per second
(throughput).

-	� Analysis latency: {update, mix, centrality}: 0.1
to 0.3 μs per node; {shortest-path}: from 0.1 µs
to several tens of microseconds per node (paths
of approximately 1000 hops). This is up to a
thousand times as fast as one well-known graph
database product.

-	� Data size: Retention of over 16 million edges
per server (8 GB of memory) ==> Retention of
100 million edges with 50 GB.

5. Open source status and future schedule

As of July 2012, Jubatus is in its third version and
an OSS release is available. It provides an integrated,
easy-to-use infrastructure aimed at specialists, pro-
grammers, and developers. It also provides an infra-
structure designed to let data scientists slot in analysis
algorithms that they want to try out and rapidly scale
up. The open source community will continue to
work actively on this.

A Jubatus analysis idea contest (Jubatus Challenge
Japan 2012) was held from July to September, 2012
[11]. The aim of this contest was to seek ideas and
business scenarios that reveal the potential of Jubatus
to the maximum by active application of open inno-
vation. An important point is the design of a Jubatus

Effective utilization
Value discovery

Technique
improvements

Implementation of idea

Brush-up

Actual data

Jubatus ecosystem
Service innovation
Infrastructure for big data

NTT R&D cloud

R&D: research and development

- Service innovation
- Remarkable analysis results

- Expansion of worldwide
 analysis market
- Leading-edge techniques

Developers
Data scientists
- Implementation
- Actual analysis

Business Incubator
- Idea
- New angles

Fig. 4. Jubatus ecosystem.

� NTT Technical Review

Feature Articles

ecosystem. Our main challenge is to act like a catalyst
in a chemical reaction amidst organic links formed by
main components without any deficiencies in the
Jubatus infrastructure technology, machine learning
algorithms, big data, or data scientists, in other words,
to design a realtime machine learning and analysis
ecosystem such as that shown in Fig. 4.

6. Future expansion

To date, the big data analysis business has centered
on making industrial use of the discovery of previ-
ously unnoticed relationships by data mining, and
batch processing analysis has centered on taking a
large volume of data that had been stockpiled and
analyzing it from many angles by trial and error to
obtain original discoveries. Henceforth, it will be
important to perform research and development from
the following viewpoints.
(1)	� Cross domain relationship analysis: Instead of

analyzing big data confined to a specific area,
discover original business possibilities and syn-
ergistic effects from relationships within big
data spanning different fields or specialist
areas.

(2)	� Realtime analysis: Support speedy operations
and create competitive advantages by making
rapid decisions based on stream-type data analy-
sis.

(3)	� Profound, realtime, big data analysis: Develop
highly value-added techniques that meet the

need for automatic judgment (based on machine
learning) where decision logic has not been pre-
viously defined, but can reflect any change in
status rapidly on the fly for automatic judgment
on the microsecond time-scale to provide rigor-
ous analysis results that cannot wait until tomor-
row or the day after and where actions taken
through human judgment (decision-making
route) would be too slow.

In the future, we will continue to promote open
source development and open innovation and the
expansion of real-life cases.

References

[1]	 S. Oda, K. Uenishi, and S. Kinoshita, “Jubatus: Scalable Distributed
Processing Framework for Realtime Analysis of Big Data,” NTT
Technical Review, Vol. 10, No. 6, 2012.

	 https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr2012
06ra2.html

[2]	 Jubatus website. http://jubat.us/
[3]	 Jubatus on Twitter. https://twitter.com/jubatusofficial
[4]	 Jubatus on github. https://github.com/jubatus/jubatus
[5]	 “The PageRank Citation Ranking: Bringing Order to the Web,”
	 http://infolab.stanford.edu/~backrub/pageranksub.ps
[6]	 NTT Press release, “Leading Development of Scalable Distributed

Computing Framework for Real-Time Analysis of Big Data,”
	 http://www.ntt.co.jp/news2011/1110e/111026a.html
[7]	 Language binding. http://en.wikipedia.org/wiki/Language_binding
[8]	 MessagePack. https://github.com/msgpack/msgpack-rpc
[9]	 Zookeeper. http://zookeeper.apache.org/
[10]	 S. Oda, S. Nakayama, K. Uenishi, and S. Kinoshita, “Jubatus: Distrib-

uted Processing Technique Enabling Realtime Processing of Big
Data,” IEICE Tech. Rep., Vol. 111, No. 409, IN2011-126, pp. 35–40,
Jan. 2012.

[11]	 Jubatus Challenge. http://www.facebook.com/JubatusChallenge2012

Keitaro Horikawa
Senior Research Engineer, Supervisor, Distrib-

uted Computing Technology Project, NTT Soft-
ware Innovation Center.

He received the B.S. and M.S. degrees in infor-
mation engineering from Niigata University in
1988 and 1990, respectively. Since joining NTT
in 1990, he has been engaged in R&D of software
design and architecture, concurrent distributed
object computing, metaprogramming and com-
putational reflection, single-sign-on for web ser-
vices, lightweight programming languages,
mobile cloud computing and big data computing,
CSCW, CSCL, and game theoretical modeling
for decision making and human factors in R&D.
He received the Best Paper Award for Young
Researchers from the Information Processing
Society of Japan (IPSJ) National Convention in
1995. As a result of organizational changes in
April 2012, he is now in NTT Software Innova-
tion Center. He is currently managing distributed
computing projects including Jubatus. He has
PMP certification by PMI and TOGAF 9 certifi-
cation by the Open Group.

Yuzuru Kitayama
Senior Research Engineer, Distributed Com-

puting Technology Project, NTT Software Inno-
vation Center.

He received the B.E. and M.S. degrees in engi-
neering from Kobe University, Hyogo, in 1996
and 1998, respectively. Since joining NTT in
1998, he has been engaged in the development
and management of large-scale web search sys-
tems and R&D of distributed processing systems.
As a result of organizational changes in April
2012, he is now in NTT Software Innovation
Center.

https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201206ra2.html

Vol. 10 No. 12 Dec. 2012 �

Feature Articles

Jungkyu Han
Researcher, Distributed Computing Technolo-

gy Project, NTT Software Innovation Center.
He received the B.S. and M.S degrees in com-

puter science and engineering from Seoul
National University, Korea, in 2005 and 2007,
respectively. Since joining NTT in 2007, he has
been engaged in R&D of stream data accumula-
tion and distributed processing systems. As a
result of organizational changes in April 2012, he
is now in NTT Software Innovation Center. His
current interests include big data analysis.

Satoshi Oda
Researcher, Distributed Computing Technolo-

gy Project, NTT Software Innovation Center.
He received the B.E. and M.E. degrees in engi-

neering from Keio University, Kanagawa, in
2003 and 2005, respectively. Since joining NTT
Information Sharing Platform Laboratories in
2005, he has been engaged in R&D of informa-
tion security, fast implementation of cryptogra-
phy, and security protocols. As a result of organi-
zational changes in April 2012, he is now in NTT
Software Innovation Center. He received the
2007 Outstanding Presentation Award from the
Japan Society for Industrial and Applied Mathe-
matics (JSIAM) and the 2009 Life Intelligence
and Office Information System (LOIS) Research
Award. He is a member of JSIAM.

Hiroki Kumazaki
Researcher, Distributed Computing Technolo-

gy Project, NTT Software Innovation Center.
He received the B.E. and M.E. degrees in engi-

neering from Nagoya Institute of Technology,
Aichi, in 2010 and 2012, respectively. Since join-
ing NTT Software Innovation Center in 2012, he
has been researching distributed computing sys-
tems.

Masakuni Ishii
Researcher, Distributed Computing Technolo-

gy Project, NTT Software Innovation Center.
He received the B.S. degree in mathematics

and computer science from the University of
Arizona, USA, in 2007 and the M.S. degree in
computer engineering from Keio University,
Kanagawa, in 2009. Since joining NTT in 2010,
he has been engaged in R&D of stream data
accumulation and distributed processing sys-
tems. As a result of organizational changes in
April 2012, he is now in NTT Software Innova-
tion Center. He is a member of IPSJ.

Koji Aoya
Senior Research Engineer, Distributed Com-

puting Technology Project, NTT Software Inno-
vation Center.

He received the M.S. degree in mathematics
from Osaka University in 2001. After joining
NTT Information Sharing Platform Laboratories
in 2001, he was engaged in R&D of information
security, fast implementation of cryptography
(especially ECDSA), and some applied protocols
such as electronic money. In 2007, he was trans-
ferred to NTT DATA Corporation, where he was
engaged in marketing and developed some solu-
tions for retail and airline industries in the related
departments. Since moving to NTT Software
Innovation Center in 2012, he has been incubat-
ing and developing the market for Jubatus.

Min Luo
Scientist, Distributed Computing Technology

Project, NTT Software Innovation Center.
He received the B.S. and M.S. degrees from

Wuhan University, China, in 2004 and 2007,
respectively, and the Ph.D. degree in computer
science from Tokyo Institute of Technology in
2011. After that, he was a full-time Associate
Researcher at Tokyo Institute of Technology.
Since joining NTT Software Innovation Center
in 2012, he has been engaged in research on
realtime big data analysis. He received the Best
Paper Award from the International Conference
on Web-Age Information Management (WAIM)
in 2010.

Shohei Uchikawa
Senior Research Engineer, Supervisor, Group

Leader, Distributed Computing Technology Proj-
ect, NTT Software Innovation Center.

He received the B.E. degree in information
engineering from Tokyo Institute of Technology
in 1988. After joining NTT Information Process-
ing Systems Laboratories in 1988, he was
engaged in developing operating system software
for the Denden Information Processing System
(DIPS) and designing a high-availability infor-
mation system that uses DIPS. Following the
gradual termination of the DIPS project in the
1990s, he took on the job of integrating several
high-availability client/server type information
systems as a systems engineer. In 2008, he
moved to NTT Communications as a general
manager in the Platform Service Department and
he contributed to the company’s application ser-
vice provider business. He returned to NTT in
2011. As a result of organizational changes in
April 2012, he is now in NTT Software Innova-
tion Center.

Hiroyuki Makino
Researcher, Distributed Computing Technolo-

gy Project, NTT Software Innovation Center.
He received the B.E. and M.S. degrees in engi-

neering from Doshisha University, Kyoto, in
2007 and 2009, respectively. Since joining NTT
Information Sharing Platform Laboratories in
2009, he has been engaged in R&D of identity
federation systems and distributed processing
systems. As a result of organizational changes in
April 2012, he is now in NTT Software Innova-
tion Center. He is a member of the Institute of
Electronics, Information and Communication
Engineers (IEICE).

