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1.   Introduction

Traditionally, applications installed on terminals 
have been the mainstream, and applications with a 
web browser user interface started coming into wide 
use around the year 2000. Then web browsers gained 
the capability to serve as an application execution 
platform, which then led to the expanding use of tech-
nologies that enhance application interactivity, such 
as Ajax* or Flash in around 2007 (Fig. 1).

In conventional applications, web-browser-down-
loaded content such as HTML (hypertext markup 
language) and image files, is rendered and displayed 
in response to a user operation (hereafter referred to 
as static content). By contrast, in applications using 
technologies such as Ajax, the web browser first 
downloads executable code such as JavaScript and 
then executes the code in response to a user operation 
(hereafter referred to as dynamic content). With 
dynamic content, most of the processing is performed 
in the terminal, so application performance is less 
susceptible to network or server performance. How-
ever, it is strongly influenced by the terminal process-
ing performance.

2.   Performance indicators and problem
with existing monitoring technology

2.1   Application performance metrics
Various indicators can be used to measure browser-

based application performance. We used an indicator 
that correlates to the user experience and is based on 
the timing from the start of a user operation until the 
time the results are displayed. We call this the experi-
enced wait time. The layer model of browser-based 
application performance indicators is shown in Fig. 2. 
The experienced wait time corresponds to a key qual-
ity indicator (KQI), and KQI consists of various key 
performance indicators (KPIs) such as the data trans-
fer time and the terminal processing time. 

We describe here a specific example of the relation-
ship between these indicators. A schematic represen-
tation of signals to be exchanged between the termi-
nal and the server in browser-based applications is 
shown in Fig. 3. The left and right illustrations are 
respective examples for static and dynamic content. 
With static content, a hypertext transfer protocol 
(HTTP) signal is issued synchronously with user 
operation and data reception, so HTTP response time, 
a KPI, and experienced wait time, a KQI, are gener-
ally consistent. In the case of dynamic content, the 
HTTP signal is issued asynchronously with user 
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* Ajax (Asynchronous JavaScript+XML) enables dynamic updat-
ing of part of an otherwise static web page.
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operation and the processing performed only in the 
user terminal such as scripting, so HTTP response 
time and experienced wait time do not correlate in 
most cases [�].

The percentage of processing time, in which the 
terminal is occupied, out of the total experienced wait 
time for some sample application operations is shown 
in Fig. 4. These results show that although there are 
differences between the operations, the terminal pro-
cessing time is a key factor in the experienced wait 
time, and the experienced wait time varies greatly in 

different types of terminals even when the operation 
is the same (e.g., Fig. 4, docoiku old terminal and 
other terminal). These evaluations show that the ter-
minal has become a key performance factor. Further-
more, existing indicators such as data transfer time 
(HTTP response time) and server response time (API 
response time) are not taken into consideration in the 
terminal processing factor, so it is not possible to 
grasp the experienced wait time from those indica-
tors.

Fig. 1.   Transition in style of application services.
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Fig. 2.   Layer model of application performance.
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2.2   Performance monitoring problem
Most existing performance monitoring products 

measure the HTTP response time and the API 
response time mentioned above. These performance 
indicators are suitable for evaluating network perfor-
mance and server performance, but not for evaluating 
experienced wait time. This is because the aforemen-
tioned terminal processing time is the key factor in 
the experienced wait time, and it is not taken into 
account in those performance indicators.

To address this problem, we developed a method to 
estimate the experienced wait time. This method is 
intended to close the gap that traditional performance 
indicators have in measuring the experienced wait 
time. We also developed a method to isolate the pri-
mary cause of deterioration. Our methods were devel-
oped for browser-based applications with dynamic 
content in order to (�) estimate the wait time experi-
enced by the user and (2) determine whether or not a 
decrease in performance was caused by the terminal.

Fig. 4.   Percentages of operation processing time out of total experienced wait time for different applications.
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*(top): Here, “top” means “top user page of docoiku application”. This graph shows the experienced wait time for
several user operations. For example “Docoiku (top) on old terminal” indicates a user operation to open the
“Docoiku top page”. 
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3.   Introduction of our methods

An overview of our methods is shown in Fig. 5. 
These methods are algorithms that take as input the 
web browser’s processing log data for networking, 
scripting, and rendering tasks; the output is the user 
experienced wait time. This information makes it 
possible to determine whether or not a decrease in 
performance was caused by the terminal for an opera-
tion of any application. More specifically, our algo-
rithms calculate a feature amount from the web 
browser’s networking, scripting, and rendering logs, 
and output the estimated results by comparing the 

conditions of the expected user wait time feature 
amount pattern and the quality deterioration caused 
by the terminal feature amount pattern, which are 
prepared in advance.

The applications that were evaluated are listed in 
Table 1. As indicated, our methods can be applied to 
widely used applications such as Salesforce and 
Microsoft Office Web Apps. To use our estimation 
methods, it is necessary to install the browser plug-in 
for the terminal targeted for estimation. This installa-
tion requires the user’s permission, so we applied the 
methods first to corporate applications.

Fig. 5.   Overview of estimation methods.
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Table 1.  Evaluated applications.

Category

Office

CRM

WebOS

Mail

Static content
applications

Application name

Microsoft Office Web Apps
Google Docs
Zoho
Lotus Live

Salesforce.com
KDDI Business Outlook

StartForce

Bizmail (Ajax edition)

Cybozu
Bizmail (HTML edition)

Source

Microsoft
Google
Zoho
IBM

Salesforce
KDDI

StartForce

NTT Communications

Cybozu
NTT Communications

Accuracy (*)

Good
Good
Good
Good

Good
Good

Good

Good

Good
Good

CRM: customer relationship management (*) More than 80%: Good
     Less than 80%: Unsatisfactory 



� NTT Technical Review

Feature Articles

4.   Summary and future work

With the development of in-browser processing 
technology such as Ajax, the terminal processing 
time has become a key factor of the wait time that 
users experience. This has caused a gap between tra-
ditional performance indicators such as HTTP 
response time and API response time and the experi-
enced wait time. We developed two methods for 
browser-based applications with dynamic content in 
order to deal with this problem. One method is used 
to estimate the wait time experienced by the user and 

the other to determine whether or not a decrease in 
performance was caused by the terminal.

In the future, we plan to develop an estimation 
method that does not require a browser plug-in in 
order to extend our methods to mass users.
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