
� NTT Technical Review

1. Introduction

Traditionally, applications installed on terminals
have been the mainstream, and applications with a
web browser user interface started coming into wide
use around the year 2000. Then web browsers gained
the capability to serve as an application execution
platform, which then led to the expanding use of tech-
nologies that enhance application interactivity, such
as Ajax* or Flash in around 2007 (Fig. 1).

In conventional applications, web-browser-down-
loaded content such as HTML (hypertext markup
language) and image files, is rendered and displayed
in response to a user operation (hereafter referred to
as static content). By contrast, in applications using
technologies such as Ajax, the web browser first
downloads executable code such as JavaScript and
then executes the code in response to a user operation
(hereafter referred to as dynamic content). With
dynamic content, most of the processing is performed
in the terminal, so application performance is less
susceptible to network or server performance. How-
ever, it is strongly influenced by the terminal process-
ing performance.

2. Performance indicators and problem
with existing monitoring technology

2.1 Application performance metrics
Various indicators can be used to measure browser-

based application performance. We used an indicator
that correlates to the user experience and is based on
the timing from the start of a user operation until the
time the results are displayed. We call this the experi-
enced wait time. The layer model of browser-based
application performance indicators is shown in Fig. 2.
The experienced wait time corresponds to a key qual-
ity indicator (KQI), and KQI consists of various key
performance indicators (KPIs) such as the data trans-
fer time and the terminal processing time.

We describe here a specific example of the relation-
ship between these indicators. A schematic represen-
tation of signals to be exchanged between the termi-
nal and the server in browser-based applications is
shown in Fig. 3. The left and right illustrations are
respective examples for static and dynamic content.
With static content, a hypertext transfer protocol
(HTTP) signal is issued synchronously with user
operation and data reception, so HTTP response time,
a KPI, and experienced wait time, a KQI, are gener-
ally consistent. In the case of dynamic content, the
HTTP signal is issued asynchronously with user

Feature Articles: QoE Estimation Technologies

Performance Estimation Techniques
for Browser-based Applications
Hiroshi Yamamoto, Sorami Nakamura, Hirotada Honda,
and Akira Takahashi

Abstract
Corporate application services using cloud computing are coming into wide use. These services

include SaaS (Software as a Service), a delivery model for cloud-hosted software applications, and are
provided via networks. Therefore, the state of the network and of the user terminal determines whether
the performance assumed in the application development is achieved. This article describes methods we
developed for estimating the waiting time experienced by the user and for determining whether or not a
decrease in performance was caused by the user terminal. These methods make it possible to visualize
application performance and to provide support when performance declines in browser-based applica-
tions, which are the main type of corporate application services.

* Ajax (Asynchronous JavaScript+XML) enables dynamic updat-
ing of part of an otherwise static web page.

Vol. 11 No. 5 May 2013 2

Feature Articles

operation and the processing performed only in the
user terminal such as scripting, so HTTP response
time and experienced wait time do not correlate in
most cases [�].

The percentage of processing time, in which the
terminal is occupied, out of the total experienced wait
time for some sample application operations is shown
in Fig. 4. These results show that although there are
differences between the operations, the terminal pro-
cessing time is a key factor in the experienced wait
time, and the experienced wait time varies greatly in

different types of terminals even when the operation
is the same (e.g., Fig. 4, docoiku old terminal and
other terminal). These evaluations show that the ter-
minal has become a key performance factor. Further-
more, existing indicators such as data transfer time
(HTTP response time) and server response time (API
response time) are not taken into consideration in the
terminal processing factor, so it is not possible to
grasp the experienced wait time from those indica-
tors.

Fig. 1. Transition in style of application services.

Transition in service style

Browser-based applicationsInstalled applications

Stand-alone
processing

Display
complete

Display
complete

Display
complete

Static content Dynamic content

Scripting

Scripting

Scripting
code

Rendering Rendering

Data size:
Big
Fre-

quency:
High

Data size:
Small

Frequency:
Low

Terminal
processing:

Light

Terminal
processing:

Heavy

HTML Ajax
Flash

HTML5Greater
impact

Greater
impact

Fig. 2. Layer model of application performance.

QoE
Quality of experience

Dominant performance factor
in browser-based applications

KQI
Key quality
 indicator

KPI
Key performance

 indicator

Experienced
performance

Experienced
wait time

Data transfer time
HTTP response

time

Terminal
processing

time

API
response

time

CPU
load

Transmis-
sion delay

Delay
variation

Packet
loss ratio

Free
memory

…

…

…

Waits for
input

Layout
break

Image
quality

Acoustic
quality

API: application programming interface
CPU: central processing unit
HTTP: hypertext transfer protocol

� NTT Technical Review

Feature Articles

2.2 Performance monitoring problem
Most existing performance monitoring products

measure the HTTP response time and the API
response time mentioned above. These performance
indicators are suitable for evaluating network perfor-
mance and server performance, but not for evaluating
experienced wait time. This is because the aforemen-
tioned terminal processing time is the key factor in
the experienced wait time, and it is not taken into
account in those performance indicators.

To address this problem, we developed a method to
estimate the experienced wait time. This method is
intended to close the gap that traditional performance
indicators have in measuring the experienced wait
time. We also developed a method to isolate the pri-
mary cause of deterioration. Our methods were devel-
oped for browser-based applications with dynamic
content in order to (�) estimate the wait time experi-
enced by the user and (2) determine whether or not a
decrease in performance was caused by the terminal.

Fig. 4. Percentages of operation processing time out of total experienced wait time for different applications.

Application name
(Operation name) Server and network factors Terminal factors Experienced wait time (s)

Document download
Server and
network factors

Stylesheet download

Scripting
Terminal factors

Rendering

20% 40% 60% 80% 100%0%

*(top): Here, “top” means “top user page of docoiku application”. This graph shows the experienced wait time for
several user operations. For example “Docoiku (top) on old terminal” indicates a user operation to open the
“Docoiku top page”.

Image download

Docoiku (top)*
on old terminalSame

operation
Docoiku (top)

Zoho (mail)

Zoho
(message list)

Zoho (top)

iTunes (top)

Rakuten
(Product search)

Rakuten (top)

6.3

3.5

8.1

4.2

7.2

7.2

5.7

10.6

Fig. 3. Correlation of performance indicators.

Terminal Server APL
Content request

Content response

Content request

Content response

Content request

Content response

HTTP
response time

API response
time

E
xp

er
ie

nc
ed

 w
ai

t t
im

e

E
xp

er
ie

nc
ed

 w
ai

t t
im

e

APL: application programming language

(a) Static content (b) Dynamic content

Terminal Server APL
Content request

Content response

Script request
Script response

Session registration

Session token response

HTTP response
time

API response
time

ScriptingScripting

Vol. 11 No. 5 May 2013 4

Feature Articles

3. Introduction of our methods

An overview of our methods is shown in Fig. 5.
These methods are algorithms that take as input the
web browser’s processing log data for networking,
scripting, and rendering tasks; the output is the user
experienced wait time. This information makes it
possible to determine whether or not a decrease in
performance was caused by the terminal for an opera-
tion of any application. More specifically, our algo-
rithms calculate a feature amount from the web
browser’s networking, scripting, and rendering logs,
and output the estimated results by comparing the

conditions of the expected user wait time feature
amount pattern and the quality deterioration caused
by the terminal feature amount pattern, which are
prepared in advance.

The applications that were evaluated are listed in
Table 1. As indicated, our methods can be applied to
widely used applications such as Salesforce and
Microsoft Office Web Apps. To use our estimation
methods, it is necessary to install the browser plug-in
for the terminal targeted for estimation. This installa-
tion requires the user’s permission, so we applied the
methods first to corporate applications.

Fig. 5. Overview of estimation methods.

Our estimation
algorithm

Our deterioration
determination

algorithm

What caused
the deterioration?

Network

(1) Estimating the experienced wait time (2) Detecting terminal bottlenecks

APL

Time

Estimated wait time

User experience

Estimation

Web browser log

User operation Display complete

<Input> <Input>

<Output>

Web browser
log

(in normal case)

Web browser log
(in deterioration case)

Experienced wait
time

<Output>

Table 1. Evaluated applications.

Category

Office

CRM

WebOS

Mail

Static content
applications

Application name

Microsoft Office Web Apps
Google Docs
Zoho
Lotus Live

Salesforce.com
KDDI Business Outlook

StartForce

Bizmail (Ajax edition)

Cybozu
Bizmail (HTML edition)

Source

Microsoft
Google
Zoho
IBM

Salesforce
KDDI

StartForce

NTT Communications

Cybozu
NTT Communications

Accuracy (*)

Good
Good
Good
Good

Good
Good

Good

Good

Good
Good

CRM: customer relationship management (*) More than 80%: Good
 Less than 80%: Unsatisfactory

� NTT Technical Review

Feature Articles

4. Summary and future work

With the development of in-browser processing
technology such as Ajax, the terminal processing
time has become a key factor of the wait time that
users experience. This has caused a gap between tra-
ditional performance indicators such as HTTP
response time and API response time and the experi-
enced wait time. We developed two methods for
browser-based applications with dynamic content in
order to deal with this problem. One method is used
to estimate the wait time experienced by the user and

the other to determine whether or not a decrease in
performance was caused by the terminal.

In the future, we plan to develop an estimation
method that does not require a browser plug-in in
order to extend our methods to mass users.

Reference

[�] H. Yamamoto, S. Nakamura, H. Honda, D. Ikegami, and A. Takahashi,
“The Consideration of Web Browsing Application Performance Fac-
tor,” IEICE-CQ20�2-20, pp. �7–22, 20�2 (in Japanese).

Hiroshi Yamamoto
Senior Research Engineer, IP Service Network

Engineering Group, NTT Network Technology
Laboratories.

He received the B.S. and M.S. degrees in infor-
mation and computer science from Waseda Uni-
versity, Tokyo, in �999 and 200�, respectively.
He joined NTT Service Integration Laboratories
(now NTT Network Technology Laboratories) in
200�. He has been working on the architecture
and performance evaluation of IP networks and
web applications. He is a member of the Institute
of Electronics, Information and Communication
Engineers (IEICE).

Hirotada Honda
Research Engineer, IP Service Network Engi-

neering Group, NTT Network Technology Labo-
ratories.

He received the B.E., M.E., and Ph.D. degrees
in science from Keio University, Kanagawa, in
2000, 2002, and 20��, respectively. He joined
NTT in 2002. He is currently investigating the
playback quality estimation of progressive down-
load-based video services. He is a member of
IEICE.

Sorami Nakamura
Research Engineer, IP Service Network Engi-

neering Group, NTT Network Technology Labo-
ratories.

She received the B.S. degree in architecture
and building engineering and the M.S. degree in
mathematical and computing sciences from
Tokyo Institute of Technology in 2008 and 20�0,
respectively. Since joining NTT in 20��, she has
been working on quality design and management
in networks. She is a member of IEICE and the
Operation Research Society of Japan.

Akira Takahashi
Manager of the IP Service Network Engineer-

ing Group, Communication Traffic & Service
Quality Project, NTT Network Technology Lab-
oratories.

He received the B.S. degree in mathematics
from Hokkaido University in �988, the M.S.
degree in electrical engineering from California
Institute of Technology, USA, in �99�, and the
Ph.D. degree in engineering from the University
of Tsukuba, Ibaraki, in 2007. He joined NTT in
�988 and has been engaged in the quality assess-
ment of audio and visual communications. He
was a co-Rapporteur of ITU-T Question ��/�2 on
Multimedia QoE and its assessment during the
2004–2008 Study Period. He is a Vice-Chairman
of ITU-T Study Group �2 (SG�2) for the 2009–
20�2 and 20��–20�6 Study Periods. He is a
Vice-Chairman of the Technical Committee of
Communication Quality in IEICE. He received
the Telecommunication Technology Committee
Award in Japan in 2004 and the ITU-AJ Award in
Japan in 200�. He also received the Best Tutorial
Paper Award from IEICE in Japan in 2006 and
the Telecommunications Advancement Founda-
tion Award in Japan in 2007 and 2008.

