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1.   Overview of Raman spectroscopy

When laser light is applied to a sample, it is scat-
tered with a finite probability. If we plot the intensity 
of scattered light as a function of its energy, we may 
find that several peaks (or bands) appear in the result, 
as shown in Fig. 1. The spectrum of scattered light as 
a function of the energy shift is known as the Raman 
spectrum, which is the main data obtained from 
Raman spectroscopy. Normally, the intensity is at a 
maximum when the energy of scattered light is equal 
to that of incident light. However, this is not the only 
peak. There are other peaks for which the energy shift 
is nonzero. Since the energy is conserved, the energy 
difference corresponds to the energy that is absorbed 
into the sample. When the peak originates from the 
interaction between light and a lattice vibration 
(called a phonon), the energy shift corresponds to the 

energy of a Raman active phonon.
If we know that the energy of a Raman active pho-

non in sample A is 500 cm−1 and that in sample B is 
530 cm−1, we can identify the sample by using Raman 
spectroscopy. This describes the basic use of Raman 
spectroscopy as a characterization tool. We know that 
for graphene there are two principal Raman bands: 
one peak appears at ~1580 cm−1, which is called the 
G band, and the other peak is seen at ~2700 cm−1, 
which is called the 2D band (or G’ band). If a sample 
does not show a G or 2D band, we do not consider it 
to be graphene.

Raman spectroscopy is useful not only for charac-
terizing a sample, but also for obtaining information 
about a sample. This is partly because there are sev-
eral parameters that we can change in Raman spec-
troscopy measurements. For example, the energy of 
incident laser light (EL) can be changed. For graphene, 
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Fig. 1.   Schematic illustration of Raman spectroscopy.
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the G band energy is known to be insensitive to the 
change in EL, whereas the 2D band energy increases 
linearly as EL increases. What is the physics behind 
the dispersive (nondispersive) behavior of the 2D (G) 
band? This is the central issue that we would like to 
explore in this review article.

2.   Phonon wave vector

Phonons in graphene form the energy band struc-
tures, and a phonon’s energy is a function of the wave 
vector q as ω(q). If we assume that a phonon’s 
energy does not depend on the EL value used in the 
experiment (which is true for most experimental con-
ditions), the nondispersive behavior of the G band 
suggests that the identical phonon with a fixed q value 
is created while EL is changed. In fact, the wave vec-
tor of the G phonon is q = 0 (the Γ point), and the 
nondispersive behavior of the G band is reasonably 
understood because ω(0) is independent of EL. 
Meanwhile, many studies have revealed that the 2D 
band consists of two A1g zone-boundary phonons. 
The wave vector of each phonon is near the K point; 
namely, it is written as K + q, where q represents a 
small derivation from K (the wave vector of the K 
point). A reasonable solution to explain the dispersive 
behavior of the 2D band is to think that the wave vec-
tor q is changed by changing EL.

Let us explain the reason for the EL dependence of 
q. A process for the 2D band that is induced in the 

electronic band structures called Dirac cones by laser 
light is shown in Fig. 2(a). Because the wave vector 
of light (typically ~1/600 nm) is much smaller than 
the wave vector of electrons and holes, optical transi-
tions are possible only when an electron is transferred 
between the valence and conduction bands without a 
change in its wave vector. Thus, a vertical electron-
hole pair is created by light, and it is annihilated by 
the emission of scattered light. An immediate conse-
quence of such a direct transition in the Dirac cones 
is that EL is related to the wave vector of a photo-
excited electron (and hole) k as EL = 2 νFk, where νF  
is the electron’s velocity and k = |k|. Thus, increasing 
EL is equivalent to increasing the radius of the circle 
defined with respect to the K point shown in 
Fig. 2(b).

When a photo-excited electron emits an A1g pho-
non, the valley changes from K to K’ due to momen-
tum conservation. Let the wave vector of the scattered 
electron be k', which is measured from the K’ point*1.
Similarly, the photo-excited hole changes its valley 
from the K point to the K’ point when it emits an A1g 
phonon. In general, the hole is not scattered into the 
position just below the electron because the electron 

Fig. 2.   �(a) Schematic of a Raman process in the Dirac cones of graphene. (b) Top view of (a). (c) The A1g phonon is emitted 
from an electron through backward scattering. 
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*1	 Strictly speaking, the radius of the circle near the K’ point, i.e., 
|k'|, shown in Fig. 1(b) must be a little smaller than that near the 
K point k = |k|, because of energy conservation with respect to 
the phonon’s energy. We consider the case in which EL = 2 νFk is 
much larger than the phonon energy (~0.15 eV); the difference 
between the radii is not essential in this discussion.
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and hole are independently scattered by different A1g 
phonons. Only when the wave vectors of the scattered 
hole and electron are identical (as shown in Fig. 2(a)) 
can the hole and electron be annihilated by scattered 
light emission, which can be observed as the 2D band 
in the Raman spectrum.

3.   Dominance of backward scattering

If there is no preferred direction of k' for a given k, 
the q (≡ k' – k) value cannot be specified. This is easy 
to recognize by projecting the process shown in 
Fig. 2(a) onto the two dimensional k-space shown in 
Fig. 2(b), in which the magnitude q = |q| is small for 
the forward scattering (q ≈ 0), denoted by the dashed 
arrow in Fig. 2(b), while it can be large for the back-
ward scattering (q ≈ –2k). 

Interestingly, there is a strong probability that the 
electron will undergo backward scattering when it 
emits an A1g phonon, as shown in Fig. 2(c). Namely, 
although the forward scattering may be allowed by 
momentum conservation, it never takes place because 
the corresponding electron-phonon matrix element is 
suppressed. In fact, the calculated matrix element 
squared is proportional to 1– cos(Θ' – Θ), where Θ 
(Θ') is the angle between k (k') and the kx-axis. The 
matrix element squared vanishes for the forward scat-
tering (Θ' = Θ), while it takes the maximum for the 
backward scattering (Θ' = Θ + π). Thus, the phonons 
whose wave vector satisfies q = |q| ≈ 2k contribute 
significantly to the 2D band. As a result, increasing 
the EL is equivalent to increasing linearly the magni-
tude of the wave vector of the phonon, q(EL) ≈ EL/
νF.*2

4.   Phonon dispersion and self-energy

The next problem is the q dependence of ω(q).
Normally, the dispersion relation of phonons is calcu-
lated by using a classical model in which carbon 
atoms are connected by springs with some force con-
stants. If we assume that the force constants are non-
zero only for nearest-neighbor carbon atoms, it can 
be shown that the q dependence is negligible: ω(q) = 
constant, for which we fail to explain the dispersive 
behavior of the 2D band. Thus, many studies have 
been done concerning the parameters including the 
force constants beyond the nearest-neighbor that can 
reproduce the experimental results. However, even if 
a classical model gives ω(q) = constant, quantum 
mechanics can modify the q dependence of ω(q) 
through the self-energy. 

The concept of self-energy is also essential in 
explaining the experimental result in which the ener-
gy of the G band increases as the Fermi energy μ 
increases (by doping). Suppose that a phonon with 
wave vector q hits an electron with wave vector k 
through electron-phonon interaction. The electron is 
transferred from the valence to the conduction bands, 
and the wave vector becomes k + q due to momentum 
conservation. Since q = 0 for the G band, the electron 
undergoes a vertical transition (Fig. 3). There are dif-
ferent vertical transitions depending on the value of k. 
These vertical electron-hole pairs are the intermedi-
ate (virtual) states of the phonon, so they return to the 
original phonon after a while. The important point 
here is that the presence/absence of the virtual states 
gives an observable consequence. Namely, the pres-
ence/absence of virtual states decreases/increases the 
phonon energy. As can be seen in Fig. 3, when μ is 
close to the Dirac point (i.e., μ ≈ 0), all possible vir-
tual states exist. As a result, the phonon energy takes 
its minimum value because the correction to the 
energy, which is a negative quantity as Π(μ) ∝ – 

∫μ
∞

dk/(2 νF), is maximal in this case. By contrast, 

when the graphene is doped, some of the virtual states 
are forbidden by the exclusion principle, and the 
energy of the phonon increases. In fact, it can be 
shown that the self-energy Π(μ) is proportional to the 
density of states at μ, so Π(μ) increases linearly with 
|μ|.

*2	 The origin of the anisotropy of the electron-phonon matrix ele-
ment is the bonding or antibonding character (or pseudospin) in 
graphene, which is beyond the scope of this article. (See refer-
ence [1] for details on this point.)

Fig. 3.   �The doping dependence of the presence/absence 
of intermediate states that contribute to the self-
energy. 
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The dispersive behavior of the 2D band can be 
understood in terms of self-energy in a similar man-
ner to the doping dependence of the G band. Suppose 
that the A1g phonon with wave vector K + q hits an 
electron near the K point with k, the electron is trans-
ferred from the valence to the conduction band, and 
the wave vector becomes k + (K + q), due to momen-
tum conservation. To understand the self-energy of 
the phonon, we need to discuss an electron-hole pair 
that crosses two Dirac cones. However, the fact that 
the electron is very far from the hole makes it very 
difficult to consider the presence or absence of a vir-
tual state. Therefore, let us displace this Dirac cone 
from the K’ point toward the K point by - K – q. Then 
the wave vector of the electron becomes k so that the 
electron is located just above the position where the 
hole is created. The vertical electron-hole pairs in 
shifted Dirac cones will be the virtual states of the A1g 
phonon. 

Let us assume that for clarity the Fermi energy is 
fixed at the Dirac point in Fig. 4. For the A1g phonon 
with q ≈ 0, we can expect from the discussion of the 
G band that the energy will reach its minimum due to 
the self-energy. For the A1g phonon with q ≠ 0, some 
of the low-energy virtual states are excluded, so the 
energy increases from q ≈ 0. This is very similar to 
the situation in which doping prevents the low-energy 

virtual states from contributing to the self-energy of 
the G band. The number of excluded virtual states 
increases almost linearly with the increasing q. In 
fact, a direct calculation shows that the self-energy is 
proportional to q, as Gep × π2 νFq, where Gep is the 
electron-phonon coupling.

Since q is proportional to EL, the phonon energy 
exhibits a linear dependence on EL as ω (EL) ∝ 
π2Gep EL, which is consistent with the measured dis-
persive behavior of the 2D band. The self-energy also 
depends on μ. More detailed information on the self-
energy is shown in Fig. 5. Note that when μ ≈ 0, the 
self-energy follows Gep × π2 νFq.

5.   Summary and discussion

We have explored the origin of the dispersive 
behavior for the 2D band, which is the most promi-
nent peak in the Raman spectrum of graphene, by 
employing two fundamental concepts. One is the 
self-energy of phonons. The other is the dominance 
of backward scattering for the A1g phonon, which is a 
property of electron-phonon interaction.

Some comments on the latter concept are in order. 
Strictly speaking, the electron-phonon matrix ele-
ment squared being proportional to 1 – cos (Θ' – Θ) 
does not necessarily mean that only the phonons that 
satisfy q = 2k contribute to the 2D band, because the 
probability is nonzero not only for the exact back-
ward scattering (Θ' = Θ + π) but also for the approxi-
mate backward scattering (Θ' ≈ Θ + π). If we take the 
distribution of the approximate backward scatterings 
into account, it can be shown that the average q value 

Fig. 4.   �The concept of shifted Dirac cones, which enables 
us to capture the virtual electron-hole pairs that 
contribute to the self-energy of an inter-valley 
phonon as direct electron-hole pairs. 
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Fig. 5.   �Self-energy as a function of q and μ. The self-energy 
is scaled by the electron phonon coupling, Gep.
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is a little smaller than 2k. In fact, the average q value 
is given by introducing a numerical factor (1.3) as q ≈ 
EL/1.3 νF. This prediction can be verified by examin-
ing the μ dependence of the width of the 2D band [2]. 
A reduction factor seems to be necessary to explain 
the recent experimental data [3]. Meanwhile, a calcu-
lation of the S-matrix, which takes off-resonance 
processes into account, for the 2D band suggests that 
the contribution of the phonon with q = 2k is strongly 
enhanced [4]. Thus, determining the exact q value is 
an unresolved problem. 

The concept of migration of Dirac cones used in 
understanding the virtual states for the self-energy of 
an A1g phonon may be important when graphene is 
subjected to strain. A uniform strain causes a shift of 

the Dirac cones, and the phonon’s q value would be 
changed by applying strain to a graphene sample.
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