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1.   Fully homomorphic encryption

In recent years, we have been entrusting more and 
more of our electronic data to the cloud, including e-
mail, internal company documents, and personal 
information. Protecting the privacy and confidential-
ity of that data is a major challenge for today’s secu-
rity researchers and practitioners. A 2013 study by 
the Cloud Security Alliance revealed a worrying 
increase in the number of major data breach incidents 
in which cloud data was leaked as a result of negli-
gence, malware, or insider attacks [1]. Cryptogra-
phers have proposed several possible approaches to 
addressing the problem of cloud security without 
compromising on functionality. One of the most 
promising approaches is fully homomorphic encryp-
tion, which has garnered a lot of attention in recent 
years.

Encrypting data before sending it to the cloud is a 
simple way of guaranteeing confidentiality. Parties 
who do not own the decryption key, including mali-
cious hackers and the cloud server operators them-
selves, cannot learn anything about the data that was 
encrypted. Therefore, that data remains safe even in 
the case of a breach. However, if one uses traditional 
encryption, it also becomes impossible for the cloud 
operators to carry out any kind of processing of that 
data (even searching it, for example), as they would 

have to decrypt it first. This defeats the purpose of 
most applications of cloud computing. Fortunately, 
fully homomorphic encryption eliminates that limita-
tion. Data encrypted with fully homomorphic encryp-
tion enjoys essentially the same security guarantees 
as with traditional encryption, but it becomes possible 
to carry out arbitrary computations on it without 
decrypting it first. The result of those computations 
remains in encrypted form, and can thus only be 
recovered by the owner of the decryption key. That 
unique property makes it possible to build a wide 
range of highly secure cloud services.

2.   Potential applications

The most direct application of fully homomorphic 
encryption is probably outsourced computation (Fig. 1). 
Consider a scenario in which a client has some sensi-
tive data to process but lacks the required expertise or 
sufficient computational power; as a result, they want 
to commission a cloud service to carry out the pro-
cessing, but without revealing this sensitive data in 
plaintext form. Fully homomorphic encryption offers 
a simple solution to that problem; the client simply 
sends the data to the cloud server in encrypted form, 
and the server processes the data without decrypting 
it using the property of fully homomorphic encryp-
tion (this computation on encrypted data is called 
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homomorphic evaluation of the corresponding func-
tion). Finally, the client receives the encrypted output 
from the server and decrypts it with his key, obtaining 
the result of the processing without having revealed 
any information about the sensitive data. For exam-
ple, cloud services already exist that perform back-
testing of stock market trading strategies, but profes-
sional traders are unlikely to rely on them for fear of 
revealing highly valuable strategies. With fully 
homomorphic encryption, however, it is possible to 
provide a backtesting cloud service to traders while 
ensuring that their valuable techniques will remain 

safe from prying eyes (even those of the cloud opera-
tors themselves!). Similarly, one can imagine cloud 
services that provide DNA (deoxyribonucleic acid) 
analysis for medical institutions and law enforcement 
authorities while maintaining the confidentiality of 
DNA samples, or services that perform mechanical 
structural analysis for the aerospace or construction 
industries without asking clients to compromise the 
secrecy of their designs.

Another application of fully homomorphic encryp-
tion is anonymous data processing (Fig. 2). This kind 
of scenario involves multiple users sending some 

Fig 1.   Outsourced computation based on fully homomorphic encryption.
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Fig. 2.   Anonymous data processing with fully homomorphic encryption.
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sensitive data to a cloud server, where it is aggregated, 
stripped of identifying information, and analyzed, 
typically to extract some statistical information, 
which is then delivered to the final recipient. The 
security requirement is that the cloud server must 
learn nothing about the content of users’ data, and the 
recipient must obtain only the anonymized results of 
the statistical analysis, and in particular, no informa-
tion on individual users. This can also be achieved 
using fully homomorphic encryption; the users first 
use a fully homomorphic encryption scheme to 
encrypt their own data under the recipient’s public 
key and send it to the cloud server. The data collected 
on the server is then processed in encrypted form 
using homomorphic evaluation. The result of this 
processing is the anonymized statistical information, 
also in encrypted form. That output is then sent to the 
recipient, who finally decrypts it. Possible applica-
tions of such a protocol include secure electronic 
voting, where individual voters encrypt their ballots 
with the public key of the organizer of the vote and 
then send them to a tallying server. The server uses 
homomorphic evaluation to carry out validity checks 
on encrypted ballots and to compute the encrypted 
tally, which is then sent to the organizer, who finally 
decrypts that aggregate result without learning indi-
vidual votes. Secure auctions and statistical analysis 
of medical data are other possible uses.

There are also examples of cloud services for which 
fully homomorphic encryption is not well suited. One 
is encrypted search on a database. The reason for this 
is that the server cannot obtain any information on the 
content of the search query, so homomorphic evalua-
tion of the search operation requires processing the 
entire database from beginning to end, rather than just 
a small portion of it, making the whole operation very 
computationally costly. A secure web search service 
based on fully homomorphic encryption, for exam-
ple, would be prohibitively impractical. Similarly, 
spam filtering of encrypted e-mail and other services 
that require the cloud server itself to obtain the result 
of processing encrypted information cannot be imple-
mented using homomorphic encryption. In the case 
of spam filtering, for example, processing e-mail 
using homomorphic evaluation would yield a list of 
messages detected as spam in encrypted form, mak-
ing it impossible for the server itself to delete them 
without asking the client to decrypt that list first, a 
rather inconvenient process.

Despite such limitations, though, fully homomor-
phic encryption is undoubtedly a very promising 
technology for cloud security—if only it can be made 

efficient enough for practical applications. At the 
NTT Secure Platform Laboratories, we are hard at 
work trying to achieve this goal.

3.   Fully homomorphic encryption  
over the integers

The concept of fully homomorphic encryption 
itself was proposed in the late 1970s, but constructing 
an actual fully homomorphic encryption scheme 
remained an open problem for a long time; in fact, 
many cryptographers believed that it was impossible. 
In 2009, however, Craig Gentry of Stanford Univer-
sity disproved this widely held belief by describing 
the first fully homomorphic encryption scheme. The 
following year, he also proposed, together with van 
Dijk, Halevi, and Vaikuntanathan, a conceptually 
simpler construction of fully homomorphic encryp-
tion, based entirely on integer arithmetic. These 
results were major theoretical breakthroughs, but the 
proposed schemes were both extremely inefficient; 
thus, the problem of fully homomorphic encryption, 
while solved in theory, remained open as far as practi-
cal implementations were concerned.

Here is a succinct, somewhat simplified description 
of the original fully homomorphic encryption scheme 
over the integers of van Dijk et al. An important 
observation is that to obtain a secure fully homomor-
phic scheme that supports the encryption of arbitrary 
messages and the homomorphic evaluation of arbi-
trary functions on ciphertexts, it is in fact sufficient to 
construct a scheme to encrypt single-bit messages 
(either 0 or 1) and evaluate an arbitrary number of 
XOR and AND logic gates on encryptions of those 
bits. Indeed, data of any length can be represented as 
a bit string, and arbitrary functions on such a bit string 
can be represented as Boolean circuits (consisting of 
XOR (exclusive OR) and AND gates) on the corre-
sponding bits. By encrypting each bit of the bit string 
independently and applying the homomorphic evalu-
ation of the XOR and AND gates of the Boolean cir-
cuits, we obtain the required fully homomorphic 
functionality.

In fully homomorphic encryption over the integers, 
the secret key is a relatively large odd integer p (of 
about 600 digits, say). Given several multiples qip of 
p, it is easy to recover p by computing the greatest 
common divisor (GCD). However, recovering p from 
many approximate multiples of the form qip + ei 
(where ei is a relatively small 20- to 30-digit noise 
value) is believed to be a hard problem. In fact, if qi is 
a large enough random integer (a few million digits), 
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the approximate multiple qip + ei is indistinguishable 
from a random integer of the same size in the view of 
an attacker who does not know p. As a result, one can 
encrypt a one-bit message m (0 or 1) by adding to it a 
large, random multiple q p of p (of a few million dig-
its) as well as some even random noise 2r (of 20 to 30 
digits). To an attacker who does not know the secret 
key p, the resulting ciphertext c = q p + 2r + m is then 
indistinguishable from a random integer of the same 
size, as discussed above, regardless of whether m is 0 
or 1; hence, attackers cannot learn anything about m 
from the ciphertext c. On the contrary, the legitimate 
owner of the secret key p can decrypt the ciphertext c 
by computing the Euclidean division by p and check-
ing the parity of the remainder 2r + m: it is even if m 
is 0 and odd if m is 1. Thus, we have described a 
secure (secret-key) encryption scheme.

Moreover, this encryption scheme supports the 
homomorphic evaluation of XOR and AND gates. 
Indeed, consider two single-bit messages m1 and m2 
and corresponding ciphertexts c1 and c2. We claim 
that the sum c1 + c2 is an encryption of m1 XOR m2. 
Indeed, c1 + c2 = (q1 + q2)p + 2(r1 + r2) + (m1 + m2), 
and its remainder in the Euclidean division by p is 
2(r1 + r2) + (m1 + m2). If m1 = m2, this is an even num-
ber, and hence, c1 + c2 decrypts to 0. Similarly,  
if m1 ≠ m2, this is an odd number, and c1 + c2 decrypts 

to 1, as required. We can check in much the same  
way that the product c1 c2 = (q1q2p + 2q1r2 + q1m2 + 
2q2r1 + q2r1)p + 2(2r1r2 + r1m2 + r2m1) + m1m2 is  
a valid encryption of m1 AND m2.

Unfortunately, the scheme described above is not 
quite a fully homomorphic encryption scheme yet; it 
only satisfies the weaker property of being ‘some-
what homomorphic’. The problem is that whenever a 
homomorphic XOR and especially AND operation is 
carried out, that noise value within the ciphertext 
grows (its size roughly doubles with each AND gate). 
If too many such homomorphic operations are carried 
out, at some point the noise value becomes larger than 
p, at which point it becomes impossible to ensure cor-
rect decryption anymore (Fig. 3). Therefore, the 
scheme we just described does not support the homo-
morphic evaluation of arbitrary functions, but only of 
those functions which, when represented as a Bool-
ean circuit, consist of only a limited number of suc-
cessive levels of AND gates (hence the name some-
what homomorphic encryption). To overcome this 
problem and enable the homomorphic evaluation of 
arbitrary functions, it is necessary to devise a proce-
dure to reduce the noise within a ciphertext to some 
extent. One of the key insights of Gentry’s work is a 
technique called bootstrapping for exactly that 
purpose. Applying that technique after each AND 

Fig 3.   Bootstrapping for fully homomorphic encryption.
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gate makes it possible to evaluate arbitrary Boolean 
circuits, and hence, to obtain proper fully homomor-
phic encryption.

However, the resulting scheme is very inefficient. 
Even if we consider the somewhat homomorphic 
scheme, we see that a ciphertext of several million 
digits is needed to encrypt a single bit; in other words, 
ciphertexts are millions of times larger than the cor-
responding plaintexts, and homomorphic operations 
corresponding to simple XOR and AND gates involve 
arithmetic on huge integers, requiring both a large 
amount of memory and lengthy computations. Using 
bootstrapping to turn the scheme into a fully homo-
morphic one further reduces the efficiency by a con-
siderable extent. Consequently, something has to be 
done to approach practical levels of efficiency.

4.   Contributions of NTT

Obtaining more practical constructions of fully 
homomorphic encryption over the integers is one of 
our research topics at the NTT Secure Platform Labo-
ratories. We face three main challenges that hold back 
the performance of fully homomorphic encryption 
over the integers. The first one is ciphertext expan-
sion; as described above, ciphertexts consist of mil-
lions of digits for every single message bit. The sec-
ond one is the overhead of homomorphic evaluation; 
evaluating an operation as simple as a bitwise AND 
requires carrying out exact arithmetic on huge inte-
gers, which is slow. This problem is further com-
pounded by bootstrapping, which makes each homo-
morphic operation considerably costlier. The third 
bottleneck is the size of the public key and of public 
parameters. So far, we have described a secret key 
encryption scheme, but many applications such as 
anonymous data processing require public key 
encryption. The conversion from secret key to public 
key for a fully homomorphic scheme can be done in 
a relatively straightforward manner (it is sufficient to 
publish a large number of encryptions of 0), but this 
results in a prohibitively large public key. Moreover, 
the bootstrapping method requires publishing very 
large public parameters for homomorphic evaluation, 
even for secret key schemes.

Until 2012, we mainly tackled the first and third of 
those problems, and by introducing novel techniques 
to compress public keys and ciphertexts, as well as a 
nonlinear optimization of the encryption algorithm, 
we were able to obtain major efficiency improve-
ments. Public keys and parameters, in particular, 
went from a size so large that they would barely fit in 

an entire datacenter, as in the original construction by 
van Dijk et al., down to only a few megabytes. This 
increased the speed considerably, as less data had to 
be processed for homomorphic evaluation, enabling 
us to obtain a proof of concept implementation exe-
cutable in reasonable time on an ordinary computer 
[2].

In 2013, we proposed yet another fully homomor-
phic encryption scheme over the integers offering 
dramatic improvements to both ciphertext expansion 
and homomorphic evaluation overhead at the same 
time [3]. The key idea was to pack multiple message 
bits m1, …, mn into a single ciphertext in such a way 
that all of these bits could be processed in parallel 
during homomorphic evaluation (Fig. 4). To do so, 
we use several odd numbers p1, …, pn as the secret 
key, and we encrypt the multi-bit message (m1, …, 
mn) as an integer c obtained as a multiple of the prod-
uct p1…pn plus some noise chosen in such a way that 
the remainder of the Euclidean division of c by pi is 
of the form 2ri + mi. The Chinese remainder theorem 
ensures that we can compute such a c, and that the 
sum and product of two of these ciphertexts respec-
tively encrypt the bitwise XOR and AND of the cor-
responding multi-bit messages. Putting these many 
message bits together in a single ciphertext and pro-
cessing them homomorphically in parallel yield the 
expected efficiency improvements in terms of cipher-
text expansion and homomorphic evaluation com-
plexity. More recently, we proposed a further major 
improvement by adapting to fully homomorphic 
encryption over the integers a technique, originally 
conceived for a different type of schemes, to avoid the 
use of the expensive bootstrapping method when 
evaluating arbitrary functions homomorphically [4]. 
With that technique, homomorphic AND operations 
only increase the size of ciphertext noise by a small 
fixed amount instead of doubling it every time. As a 
result, with a suitable choice of parameters, it 
becomes possible to evaluate any given Boolean cir-
cuit homomorphically and still ensure that the noise 
size does not exceed the limit of correct decryption, 
making bootstrapping unnecessary. The new results 
from 2013 alone enabled us to improve the speed of 
fully homomorphic encryption of integers by about 
two orders of magnitude, and to obtain the world’s 
fastest homomorphic evaluation of the AES (Advanced 
Encryption Standard) block cipher in about 20 sec-
onds per block on a standard personal computer with 
no compromise on security. This level of performance 
already makes homomorphic processing of small 
amounts of data practical and enables us to envision 
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more ambitious applications in the near future.

5.   Further work

Going forward, we intend to maintain our status as 
one of the world’s top research groups investigating 
fully homomorphic encryption and to continue to 
innovate with the goal of achieving still more practi-
cal levels of efficiency. Since ciphertext compression 
techniques and other optimizations that were devel-
oped for earlier variants of fully homomorphic 
encryption over the integers cannot be used with our 
current best scheme, further efficiency improvements 
are now mainly hampered by memory requirements. 
Our first objective is to overcome that problem, so as 
to make the homomorphic processing of larger 
amounts of data practical. We will also move forward 
with research on cryptographic multilinear maps, 
another cutting-edge cryptographic technique with 
very important applications, the most prominent of 
which is certainly general program obfuscation. Mul-
tilinear maps share a number of structural similarities 
with fully homomorphic encryption; this has allowed 
us to propose a new way of constructing them, as well 
as the first ever implementation of a multilinear map-
based protocol.
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Fig. 4.   Batch ciphertexts in fully homomorphic encryption.
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