
� NTT Technical Review

1. Fully homomorphic encryption

In recent years, we have been entrusting more and
more of our electronic data to the cloud, including e-
mail, internal company documents, and personal
information. Protecting the privacy and confidential-
ity of that data is a major challenge for today’s secu-
rity researchers and practitioners. A 2013 study by
the Cloud Security Alliance revealed a worrying
increase in the number of major data breach incidents
in which cloud data was leaked as a result of negli-
gence, malware, or insider attacks [1]. Cryptogra-
phers have proposed several possible approaches to
addressing the problem of cloud security without
compromising on functionality. One of the most
promising approaches is fully homomorphic encryp-
tion, which has garnered a lot of attention in recent
years.

Encrypting data before sending it to the cloud is a
simple way of guaranteeing confidentiality. Parties
who do not own the decryption key, including mali-
cious hackers and the cloud server operators them-
selves, cannot learn anything about the data that was
encrypted. Therefore, that data remains safe even in
the case of a breach. However, if one uses traditional
encryption, it also becomes impossible for the cloud
operators to carry out any kind of processing of that
data (even searching it, for example), as they would

have to decrypt it first. This defeats the purpose of
most applications of cloud computing. Fortunately,
fully homomorphic encryption eliminates that limita-
tion. Data encrypted with fully homomorphic encryp-
tion enjoys essentially the same security guarantees
as with traditional encryption, but it becomes possible
to carry out arbitrary computations on it without
decrypting it first. The result of those computations
remains in encrypted form, and can thus only be
recovered by the owner of the decryption key. That
unique property makes it possible to build a wide
range of highly secure cloud services.

2. Potential applications

The most direct application of fully homomorphic
encryption is probably outsourced computation (Fig. 1).
Consider a scenario in which a client has some sensi-
tive data to process but lacks the required expertise or
sufficient computational power; as a result, they want
to commission a cloud service to carry out the pro-
cessing, but without revealing this sensitive data in
plaintext form. Fully homomorphic encryption offers
a simple solution to that problem; the client simply
sends the data to the cloud server in encrypted form,
and the server processes the data without decrypting
it using the property of fully homomorphic encryp-
tion (this computation on encrypted data is called

Fully Homomorphic Encryption over
the Integers: From Theory to Practice
Mehdi Tibouchi

Abstract
Fully homomorphic encryption is a groundbreaking cryptographic technique that allows the process-

ing of data in encrypted form and is likely to have major applications in cloud security. However, sig-
nificant efficiency improvements are needed before we can hope to put it to practical use. We, at the NTT
Secure Platform Laboratories, have made multiple theoretical and practical advances in the area of fully
homomorphic encryption over the integers, which is a particular type of fully homomorphic encryption,
and have obtained the world’s fastest implementation of it to date as a result.

Keywords: security, cryptography, cloud computing

Feature Articles: Security Platform Technologies that
Support Cloud Business

Vol. 12 No. 7 July 2014 �

Feature Articles

homomorphic evaluation of the corresponding func-
tion). Finally, the client receives the encrypted output
from the server and decrypts it with his key, obtaining
the result of the processing without having revealed
any information about the sensitive data. For exam-
ple, cloud services already exist that perform back-
testing of stock market trading strategies, but profes-
sional traders are unlikely to rely on them for fear of
revealing highly valuable strategies. With fully
homomorphic encryption, however, it is possible to
provide a backtesting cloud service to traders while
ensuring that their valuable techniques will remain

safe from prying eyes (even those of the cloud opera-
tors themselves!). Similarly, one can imagine cloud
services that provide DNA (deoxyribonucleic acid)
analysis for medical institutions and law enforcement
authorities while maintaining the confidentiality of
DNA samples, or services that perform mechanical
structural analysis for the aerospace or construction
industries without asking clients to compromise the
secrecy of their designs.

Another application of fully homomorphic encryp-
tion is anonymous data processing (Fig. 2). This kind
of scenario involves multiple users sending some

Fig 1. Outsourced computation based on fully homomorphic encryption.

The client encrypts the digital
data with their own key and
sends it to the cloud.

1

The client decrypts and reads
the computation results.

3 The cloud server processes
the data in encrypted form and
returns it to the client.

2

Fig. 2. Anonymous data processing with fully homomorphic encryption.

Data from several senders is encrypted with
the key of the recipient and sent to the cloud.

The recipient decrypts the results.

The cloud server cannot obtain any information about the data.
The recipient gets the computation results and nothing else.

The cloud server processes the collected data in encrypted form
and sends the results, still encrypted, to the recipient.

3

1

2

� NTT Technical Review

Feature Articles

sensitive data to a cloud server, where it is aggregated,
stripped of identifying information, and analyzed,
typically to extract some statistical information,
which is then delivered to the final recipient. The
security requirement is that the cloud server must
learn nothing about the content of users’ data, and the
recipient must obtain only the anonymized results of
the statistical analysis, and in particular, no informa-
tion on individual users. This can also be achieved
using fully homomorphic encryption; the users first
use a fully homomorphic encryption scheme to
encrypt their own data under the recipient’s public
key and send it to the cloud server. The data collected
on the server is then processed in encrypted form
using homomorphic evaluation. The result of this
processing is the anonymized statistical information,
also in encrypted form. That output is then sent to the
recipient, who finally decrypts it. Possible applica-
tions of such a protocol include secure electronic
voting, where individual voters encrypt their ballots
with the public key of the organizer of the vote and
then send them to a tallying server. The server uses
homomorphic evaluation to carry out validity checks
on encrypted ballots and to compute the encrypted
tally, which is then sent to the organizer, who finally
decrypts that aggregate result without learning indi-
vidual votes. Secure auctions and statistical analysis
of medical data are other possible uses.

There are also examples of cloud services for which
fully homomorphic encryption is not well suited. One
is encrypted search on a database. The reason for this
is that the server cannot obtain any information on the
content of the search query, so homomorphic evalua-
tion of the search operation requires processing the
entire database from beginning to end, rather than just
a small portion of it, making the whole operation very
computationally costly. A secure web search service
based on fully homomorphic encryption, for exam-
ple, would be prohibitively impractical. Similarly,
spam filtering of encrypted e-mail and other services
that require the cloud server itself to obtain the result
of processing encrypted information cannot be imple-
mented using homomorphic encryption. In the case
of spam filtering, for example, processing e-mail
using homomorphic evaluation would yield a list of
messages detected as spam in encrypted form, mak-
ing it impossible for the server itself to delete them
without asking the client to decrypt that list first, a
rather inconvenient process.

Despite such limitations, though, fully homomor-
phic encryption is undoubtedly a very promising
technology for cloud security—if only it can be made

efficient enough for practical applications. At the
NTT Secure Platform Laboratories, we are hard at
work trying to achieve this goal.

3. Fully homomorphic encryption
over the integers

The concept of fully homomorphic encryption
itself was proposed in the late 1970s, but constructing
an actual fully homomorphic encryption scheme
remained an open problem for a long time; in fact,
many cryptographers believed that it was impossible.
In 2009, however, Craig Gentry of Stanford Univer-
sity disproved this widely held belief by describing
the first fully homomorphic encryption scheme. The
following year, he also proposed, together with van
Dijk, Halevi, and Vaikuntanathan, a conceptually
simpler construction of fully homomorphic encryp-
tion, based entirely on integer arithmetic. These
results were major theoretical breakthroughs, but the
proposed schemes were both extremely inefficient;
thus, the problem of fully homomorphic encryption,
while solved in theory, remained open as far as practi-
cal implementations were concerned.

Here is a succinct, somewhat simplified description
of the original fully homomorphic encryption scheme
over the integers of van Dijk et al. An important
observation is that to obtain a secure fully homomor-
phic scheme that supports the encryption of arbitrary
messages and the homomorphic evaluation of arbi-
trary functions on ciphertexts, it is in fact sufficient to
construct a scheme to encrypt single-bit messages
(either 0 or 1) and evaluate an arbitrary number of
XOR and AND logic gates on encryptions of those
bits. Indeed, data of any length can be represented as
a bit string, and arbitrary functions on such a bit string
can be represented as Boolean circuits (consisting of
XOR (exclusive OR) and AND gates) on the corre-
sponding bits. By encrypting each bit of the bit string
independently and applying the homomorphic evalu-
ation of the XOR and AND gates of the Boolean cir-
cuits, we obtain the required fully homomorphic
functionality.

In fully homomorphic encryption over the integers,
the secret key is a relatively large odd integer p (of
about 600 digits, say). Given several multiples qip of
p, it is easy to recover p by computing the greatest
common divisor (GCD). However, recovering p from
many approximate multiples of the form qip + ei
(where ei is a relatively small 20- to 30-digit noise
value) is believed to be a hard problem. In fact, if qi is
a large enough random integer (a few million digits),

Vol. 12 No. 7 July 2014 �

Feature Articles

the approximate multiple qip + ei is indistinguishable
from a random integer of the same size in the view of
an attacker who does not know p. As a result, one can
encrypt a one-bit message m (0 or 1) by adding to it a
large, random multiple q p of p (of a few million dig-
its) as well as some even random noise 2r (of 20 to 30
digits). To an attacker who does not know the secret
key p, the resulting ciphertext c = q p + 2r + m is then
indistinguishable from a random integer of the same
size, as discussed above, regardless of whether m is 0
or 1; hence, attackers cannot learn anything about m
from the ciphertext c. On the contrary, the legitimate
owner of the secret key p can decrypt the ciphertext c
by computing the Euclidean division by p and check-
ing the parity of the remainder 2r + m: it is even if m
is 0 and odd if m is 1. Thus, we have described a
secure (secret-key) encryption scheme.

Moreover, this encryption scheme supports the
homomorphic evaluation of XOR and AND gates.
Indeed, consider two single-bit messages m1 and m2
and corresponding ciphertexts c1 and c2. We claim
that the sum c1 + c2 is an encryption of m1 XOR m2.
Indeed, c1 + c2 = (q1 + q2)p + 2(r1 + r2) + (m1 + m2),
and its remainder in the Euclidean division by p is
2(r1 + r2) + (m1 + m2). If m1 = m2, this is an even num-
ber, and hence, c1 + c2 decrypts to 0. Similarly,
if m1 ≠ m2, this is an odd number, and c1 + c2 decrypts

to 1, as required. We can check in much the same
way that the product c1 c2 = (q1q2p + 2q1r2 + q1m2 +
2q2r1 + q2r1)p + 2(2r1r2 + r1m2 + r2m1) + m1m2 is
a valid encryption of m1 AND m2.

Unfortunately, the scheme described above is not
quite a fully homomorphic encryption scheme yet; it
only satisfies the weaker property of being ‘some-
what homomorphic’. The problem is that whenever a
homomorphic XOR and especially AND operation is
carried out, that noise value within the ciphertext
grows (its size roughly doubles with each AND gate).
If too many such homomorphic operations are carried
out, at some point the noise value becomes larger than
p, at which point it becomes impossible to ensure cor-
rect decryption anymore (Fig. 3). Therefore, the
scheme we just described does not support the homo-
morphic evaluation of arbitrary functions, but only of
those functions which, when represented as a Bool-
ean circuit, consist of only a limited number of suc-
cessive levels of AND gates (hence the name some-
what homomorphic encryption). To overcome this
problem and enable the homomorphic evaluation of
arbitrary functions, it is necessary to devise a proce-
dure to reduce the noise within a ciphertext to some
extent. One of the key insights of Gentry’s work is a
technique called bootstrapping for exactly that
purpose. Applying that technique after each AND

Fig 3. Bootstrapping for fully homomorphic encryption.

Freshly encrypted ciphertext …

…

…

…

…

Ciphertext (millions of digits)
Size of integer p (about 600 digits)

Noise

After bootstrapping Reduced noise

Noise (after 1
multiplication)After 1 multiplication:

noise size x 2

After 2 multiplications:
noise size x 4

After 3 multiplications:
noise size x 8

Noise (after 2 multiplications)

Noise (after 3 multiplications) exceeds p: decryption fails

B
oo

ts
tr

ap
pi

ng

� NTT Technical Review

Feature Articles

gate makes it possible to evaluate arbitrary Boolean
circuits, and hence, to obtain proper fully homomor-
phic encryption.

However, the resulting scheme is very inefficient.
Even if we consider the somewhat homomorphic
scheme, we see that a ciphertext of several million
digits is needed to encrypt a single bit; in other words,
ciphertexts are millions of times larger than the cor-
responding plaintexts, and homomorphic operations
corresponding to simple XOR and AND gates involve
arithmetic on huge integers, requiring both a large
amount of memory and lengthy computations. Using
bootstrapping to turn the scheme into a fully homo-
morphic one further reduces the efficiency by a con-
siderable extent. Consequently, something has to be
done to approach practical levels of efficiency.

4. Contributions of NTT

Obtaining more practical constructions of fully
homomorphic encryption over the integers is one of
our research topics at the NTT Secure Platform Labo-
ratories. We face three main challenges that hold back
the performance of fully homomorphic encryption
over the integers. The first one is ciphertext expan-
sion; as described above, ciphertexts consist of mil-
lions of digits for every single message bit. The sec-
ond one is the overhead of homomorphic evaluation;
evaluating an operation as simple as a bitwise AND
requires carrying out exact arithmetic on huge inte-
gers, which is slow. This problem is further com-
pounded by bootstrapping, which makes each homo-
morphic operation considerably costlier. The third
bottleneck is the size of the public key and of public
parameters. So far, we have described a secret key
encryption scheme, but many applications such as
anonymous data processing require public key
encryption. The conversion from secret key to public
key for a fully homomorphic scheme can be done in
a relatively straightforward manner (it is sufficient to
publish a large number of encryptions of 0), but this
results in a prohibitively large public key. Moreover,
the bootstrapping method requires publishing very
large public parameters for homomorphic evaluation,
even for secret key schemes.

Until 2012, we mainly tackled the first and third of
those problems, and by introducing novel techniques
to compress public keys and ciphertexts, as well as a
nonlinear optimization of the encryption algorithm,
we were able to obtain major efficiency improve-
ments. Public keys and parameters, in particular,
went from a size so large that they would barely fit in

an entire datacenter, as in the original construction by
van Dijk et al., down to only a few megabytes. This
increased the speed considerably, as less data had to
be processed for homomorphic evaluation, enabling
us to obtain a proof of concept implementation exe-
cutable in reasonable time on an ordinary computer
[2].

In 2013, we proposed yet another fully homomor-
phic encryption scheme over the integers offering
dramatic improvements to both ciphertext expansion
and homomorphic evaluation overhead at the same
time [3]. The key idea was to pack multiple message
bits m1, …, mn into a single ciphertext in such a way
that all of these bits could be processed in parallel
during homomorphic evaluation (Fig. 4). To do so,
we use several odd numbers p1, …, pn as the secret
key, and we encrypt the multi-bit message (m1, …,
mn) as an integer c obtained as a multiple of the prod-
uct p1…pn plus some noise chosen in such a way that
the remainder of the Euclidean division of c by pi is
of the form 2ri + mi. The Chinese remainder theorem
ensures that we can compute such a c, and that the
sum and product of two of these ciphertexts respec-
tively encrypt the bitwise XOR and AND of the cor-
responding multi-bit messages. Putting these many
message bits together in a single ciphertext and pro-
cessing them homomorphically in parallel yield the
expected efficiency improvements in terms of cipher-
text expansion and homomorphic evaluation com-
plexity. More recently, we proposed a further major
improvement by adapting to fully homomorphic
encryption over the integers a technique, originally
conceived for a different type of schemes, to avoid the
use of the expensive bootstrapping method when
evaluating arbitrary functions homomorphically [4].
With that technique, homomorphic AND operations
only increase the size of ciphertext noise by a small
fixed amount instead of doubling it every time. As a
result, with a suitable choice of parameters, it
becomes possible to evaluate any given Boolean cir-
cuit homomorphically and still ensure that the noise
size does not exceed the limit of correct decryption,
making bootstrapping unnecessary. The new results
from 2013 alone enabled us to improve the speed of
fully homomorphic encryption of integers by about
two orders of magnitude, and to obtain the world’s
fastest homomorphic evaluation of the AES (Advanced
Encryption Standard) block cipher in about 20 sec-
onds per block on a standard personal computer with
no compromise on security. This level of performance
already makes homomorphic processing of small
amounts of data practical and enables us to envision

Vol. 12 No. 7 July 2014 �

Feature Articles

more ambitious applications in the near future.

5. Further work

Going forward, we intend to maintain our status as
one of the world’s top research groups investigating
fully homomorphic encryption and to continue to
innovate with the goal of achieving still more practi-
cal levels of efficiency. Since ciphertext compression
techniques and other optimizations that were devel-
oped for earlier variants of fully homomorphic
encryption over the integers cannot be used with our
current best scheme, further efficiency improvements
are now mainly hampered by memory requirements.
Our first objective is to overcome that problem, so as
to make the homomorphic processing of larger
amounts of data practical. We will also move forward
with research on cryptographic multilinear maps,
another cutting-edge cryptographic technique with
very important applications, the most prominent of
which is certainly general program obfuscation. Mul-
tilinear maps share a number of structural similarities
with fully homomorphic encryption; this has allowed
us to propose a new way of constructing them, as well
as the first ever implementation of a multilinear map-
based protocol.

References

[1]	 Cloud Security Alliance, Cloud Vulnerabilities Working Group,
“Cloud Computing Vulnerability Incidents: A Statistical Overview,”
2013.

[2]	 J.-S. Coron, D. Naccache, and M. Tibouchi, “Public Key Compres-
sion and Modulus Switching for Fully Homomorphic Encryption over
the Integers,” EUROCRYPT 2012, LNCS 7237, pp. 446–464, 2012.

[3]	 J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi,
and A. Yun, “Batch Fully Homomorphic Encryption over the Inte-
gers,” EUROCRYPT 2013, LNCS 7881, pp. 315–335, 2013.

[4]	 J.-S. Coron, T. Lepoint, and M. Tibouchi: “Scale-invariant Fully
Homomorphic Encryption over the Integers,” PKC 2014, LNCS 8383,
pp. 311–328, 2014.

Fig. 4. Batch ciphertexts in fully homomorphic encryption.

In previous work,
efficiency was
hampered by the
very large ciphertext
expansion factor
and the high
overhead of
homomorphic
evaluation.

Packing multiple
messages into a
single ciphertext
reduces both the
ciphertext expansion
factor (directly) and
homomorphic
evaluation overhead
(thanks to parallel
message processing).

m

m'

c

c'

m AND m'

c × c'

m3 m2 m1

c

c'

c × c'

m3' m2' m1'

m3 AND m3' m2 AND m2' m1 AND m1'

Mehdi Tibouchi
Researcher, Okamoto Research Laboratory,

NTT Secure Platform Laboratories.
He is an alumnus of École normale supérieure

in Paris, France and received a Ph.D. in computer
science from the University of Paris VII and the
University of Luxembourg in 2011. He joined the
NTT Secure Platform Laboratories thereafter.
His research interests include the design and
analysis of public-key cryptographic schemes,
with a particular view towards new feature-rich
primitives. He is a member of the International
Association for Cryptologic Research (IACR)
and the European Association for Theoretical
Computer Science (EATCS).

