
� NTT Technical Review

1. Introduction

In the 2�st century, it is fair to say that society is
growing in tandem with computer systems (hereinaf-
ter referred to as systems). All elements of society,
including global financial networks, transportation
infrastructure, telecommunications infrastructure,
and corporate activities, in addition to social areas
involving individual consumption activities and
friendship-related social activities are supported by
systems.

It was not very long ago, however, that the dramatic
increase in the demand for systems occurred. The
years �995 and 2000 were respectively known as the
first year of the Internet and the year 2000 problem.
Before then, systems were used only in public offices
and major companies in the financial, telecommuni-
cations, and manufacturing industries, and the pres-
ence of systems was not recognized or discussed by
the general public. In other words, during the last
decade or two, the existence value of systems has
risen steeply, and systems have become an essential
social infrastructure. This change was brought about
namely by the increase in computer power achieved
through the progressive technical development of
hardware.

The capabilities of the three major element tech-

nologies: the CPU (central processor unit), hard disk
(for storage), and network, have increased by ten
thousand times in the last decade and a hundred thou-
sand times in the last two decades, as shown in Fig. 1.
In parallel with this, their prices have declined,
another major factor that has enabled individuals to
easily use computers and systems.

2. Role and progress of software technology

However, software is another element in addition to
hardware that makes up systems. The development
scale of software has been increasing in the last two
decades so that systems can meet the various demands
for them in society, while the development time has
simultaneously been shortened. The changes in the
sizes of software development programs and in the
development time for mobile phones are shown in
Fig. 2. In addition, a wide variety of software has
been developed, including software for financial sys-
tems run on general-purpose computers, E-commerce
software run on widely used operating systems, for
example, UNIX and Windows on open servers, and
also game software for smartphones. Today, software
is an essential component to achieve or support such
social activities.

However, the development of software technology

Feature Articles: Technology for Innovating Software Production

Software Production Technologies
that Support Large-scale System
Development
Hiroshi Tomiyasu

Abstract
Information systems that support social and industrial activities cannot be constructed without soft-

ware on a large scale. Production technologies for developing such software, however, have made little
significant progress over the past few decades, and what currently happens is that ever-increasing
demands are met using labor-intensive methods. These Feature Articles describe innovative software
production technologies that can overcome these issues with software development.

Keywords: software production technologies, software development automation, legacy systems

Vol. 12 No. 12 Dec. 2014 2

Feature Articles

over the last two decades has progressed more slowly
than that of hardware. The progress achieved in soft-
ware technology is shown in Fig. 3. This progress
includes the evolution of programming languages in

the beginning of the development period. In the early
computer age, software was developed using lan-
guages that ran directly on computers such as machine
language and assembly language. These languages

Fig. 1. Progress of three major element technologies.

1 G 233 MHz

(bit/s) (Byte)

ISDN (64 kbit/s)

ADSL (1.5 Mbit/s)
ADSL (24 Mbit/s)

(Hz) CPU

Storage

Network

Exponential improvement

18 GHz
(equivalent)

18 GHz
(equivalent)13 GHz

(equivalent)9.0 GHz
(equivalent)

4.4 GHz
(equivalent)

3.2 GHz
1.4 GHz

100 G

10 G

100 M

10 M

1 T

10 P

100 T

10 G

100 M

ADSL: asymmetric digital subscriber line
ISDN: integrated services digital network
FTTH: fiber to the home

10 M

1 G

100 M
2.1 GB

12 GB

160 GB

1 TB
1.5 TB 2 TB 3 TB

4 TB

FTTH (1 Gbit/s)

FTTH (200 Mbit/s)
FTTH (100 Mbit/s)

2000 2005 2010 (Year)

Fig. 2. Changes in size of software program and development time for mobile phones.

1 M

Change in size of program for mobile phones

Development time Size

(Year)

S
iz

e
of

 s
of

tw
ar

e
(L

O
C

: l
in

es
 o

f c
od

e)

500 K

2 M

1989 1996 1999

Source: ET2002 TB-6 “Measures for improvement in quality in embedded system development”
(Corporate Research & Development Center, Toshiba)

8-bit generation 16-bit generation

 700 K

1.5 M

2.2 M

6 months

4-bit generation4-bit generation

12 months

� NTT Technical Review

Feature Articles

were too complicated for humans to understand, so
high-level languages such as COBOL (common busi-
ness-oriented language), C, and Java were developed
later. These languages can be written with a writing
system such as English that can be easily understood
by humans, and as a result, they became widely used
and mainstream programming languages. At the
same time, development processes have progressed.
Large-scale software development requiring many
person-hours must proceed without gaps in aware-
ness occurring between development personnel. This
is achieved by defining the procedures and formats of
necessary documents for design, programming, and
testing. Over the years, a great number of develop-
ment processes have been accumulated, which are
now consolidated into the widely used waterfall and
agile development processes.

As shown in Fig. �, this progress in technology has
enabled large-scale system development since the
�970s. When we look at software development only,
however, and if we consider one benchmark for
development productivity to be the amount of soft-
ware that can be developed by one person, we find
that these technologies have actually contributed very

little to improving productivity in the last 20 years. As
mentioned earlier, the hardware capability has been
increased a hundred thousand times in the past two
decades. Unfortunately, the progress made in soft-
ware technology has not improved software develop-
ment productivity.

The reason for this is that these technologies have
been developed on the assumption that all of the work
related to software development is performed by
humans. In other words, we have been developing
technologies to create an environment comfortable
for humans that is easy to understand or that helps
humans understand the flow of a complex develop-
ment process more easily. However hard one person
works, though, there is a limit to the number of docu-
ments and the amount of software that can be created
or programmed by him/her only.

3. Software development technology to support
large-scale software production

The social importance of software is increasing,
and as described earlier, the amount of development
is also increasing year by year. In addition, in Japan,

Fig. 3. Technical progress of software development.

ANSER: Automatic answer Network System for Electronic Request
CAFIS: Credit and Finance Information System
COBOL: common business-oriented language
PL/I: Programming Language One
RAD: rapid application development

COBOL
PL/I

C
Java

Waterfall model

Spiral model

RAD model

CAFIS

ANSER

Agile model

1950s 1960s 1970s 1980s 1990s 2000s

1973
Interbank
payments
system

1981

1978

1984

2003
i-mode
Gateway
system

i-mode
Gateway
system

Online postal
saving system
Online postal
saving system

Vol. 12 No. 12 Dec. 2014 �

Feature Articles

large-scale social infrastructure development is
planned for the coming years, which will greatly
increase the demand for software development. This
is referred to as the year 2015 problem, because there
are concerns that meeting the demand for such large-
scale development will be difficult.

One solution to meet the greatly increasing demand
is to increase the number of developers. Previously in
offshore development, we outsourced development to
countries endowed with abundant labor and with
lower labor costs such as China and India, and we
imported software created in such countries. Howev-
er, the recent depreciation of the Yen offers little cost
advantage in continuing with this approach.

Now, it is necessary to drastically improve the pro-
ductivity of software development. To do this, we
need to use computer power to create a process in
which no human is involved or nothing is produced
(explained below). There are differences of opinion
as to the feasibility of this, but a look at the automo-
bile industry shows that the same movement occurred
in the �990s and the 2000s, which led to success.
Automobile design is now digitized, and the move-
ment and performance of automobiles are evaluated
by computer simulation to reduce the number of trial
vehicles that are produced, which shortens the period
to start a mass production. Needless to say, mass pro-
duction is automated and performed by robots in the
plants. Implementing the same sort of automation
process in software development would drastically
improve productivity.

NTT DATA is working to substantially improve
productivity by carrying out activities to innovate
software production technology. These activities tar-
get particular areas; these areas are outlined below
and described in detail in the other articles in this
issue.
(�) Promotion of automated software development

[�]
(2) Research and development (R&D) of simulators

[2]
(�) R&D for reuse of software [�]
(�) Legacy modernization [�]

With regard to (�), we aim to automate each process
in conventional software development by reducing
human involvement. Software development broadly
consists of three processes: design, production (pro-
gramming), and testing, and these processes are
implemented using automation tools that can mini-
mize the involvement of humans. The key point is
that conventionally implemented workloads can be

reduced with no involvement of humans, which leads
to improved productivity. R&D of these automation
tools was done previously, and many similar types of
products exist around the world. However, they have
not come into wide use. NTT DATA has been pro-
moting this software development style since 20�0,
and the key point is how we expand the use of our
style and make it the de-facto standard.

Regarding item (2), the objective is not to automate
the processes that have been previously implemented
by humans but to simulate the operation of software
using digitized design information to determine
whether the operation is normal before initiating pro-
duction. This activity is modeled after the automobile
industry mentioned earlier. This way of carrying out
the process differently from that in conventional soft-
ware development can achieve a significant improve-
ment in productivity.

The approach for item (�) is to produce nothing.
NTT DATA possesses a great amount of software and
related documents including design specifications.
We have tried reusing these assets many times and
have failed every time. This is not an experience that
pertains to NTT DATA alone but a phenomenon pres-
ent in the software industry in general. Thus, we
started R&D not only to clarify what prevents us from
reusing them but also to derive conditions for suc-
cessful reuse. We are also studying not only direct
reuse of these software and design specifications but
also how to use them indirectly to support other
activities using information obtained from them.

Finally, item (�) concerns how we can revitalize the
existing systems. Although the purpose is different
from those described above, this may be a major issue
in Japan in the future. In Japan, as represented by the
word mottainai, we have a culture of using tools care-
fully for long periods of time. Systems and software
are no exception. Hardware deteriorates with age,
while software does not need to be changed unless
any major changes are made to operations and ser-
vices. Therefore, software can be used in society
continuously for generations. Every time the configu-
ration of hardware changes significantly, however,
the software is affected by such changes.

There is currently a major trend towards migrating
systems from hardware known as general-purpose
computers or mainframes to open hardware or hard-
ware with UNIX operating systems that include a
Linux or Windows operating system. This trend
means that we have to not only migrate software but
also to make major unnecessary changes and modifi-
cations to it. Systems constructed on general-purpose

5 NTT Technical Review

Feature Articles

computers are often called legacy systems; therefore,
this approach is called legacy modernization. Many
extremely large-scale systems are nearing the end of
their use due to the general aging and deterioration of
general-purpose computers. Because many of these
systems have been subjected to repeated revisions/
changes over several decades, their internal structures
are unknown, and there are no skilled programmers
able to work with them. An improvement of this situ-
ation cannot be achieved with human labor alone; it
requires analysis by means of computer power and
automation of software development for revitaliza-
tion, which we are now studying.

4. Conclusion

In the era of mass consumption of software along
with the use of larger-scale and more diversified sys-
tems, it is clear that we have nearly reached the limit
of software development by humans. Software devel-
opment, however, is associated with risks, and we
may face psychological barriers when adopting a new
software development method. More time is needed

to address this situation. NTT DATA will proceed
with plans to challenge the common practices of soft-
ware development by conducting R&D on tools to
achieve a drastic improvement in productivity while
steadily emphasizing the need to expand the use of
such tools.

References

[�] T. Azuma, “Automation Technology for Software Development at
NTT DATA,” NTT Technical Review, Vol. �2, No. �2, 20��.

 https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr20��
�2fa2.html

[2] T. Kaneko, “From Labor Intensive to Knowledge Intensive—Realiz-
ing True Shift to Upper Phases of Development with TERASOLUNA
Simulator,” NTT Technical Review, Vol. �2, No. �2, 20��.

 https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr20��
�2fa�.html

[�] E. Yoshida, “Efforts to Reuse Software Assets,” NTT Technical
Review, Vol. �2, No. �2, 20��.

 https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr20��
�2fa�.html

[�] H. Tanino, “Legacy Modernization for Continuous Use of Informa-
tion Systems,” NTT Technical Review, Vol. �2, No. �2, 20��.

 https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr20��
�2fa5.html

Hiroshi Tomiyasu
Head of Center for Applied Software Engineer-

ing, Research and Development Headquarters,
NTT DATA Corporation.

He received the B.Eng. in engineering sciences
from Tsukuba University, Ibaraki, in �990. He
joined NTT DATA in �990 and studied image
recognition systems from �990 to 200�. He then
moved to the financial system division and devel-
oped financial systems for several years. He
moved back to the R&D division in 2006, and
until recently was leading research on software
engineering, particularly techniques and tools for
automating the design, implementation, and test-
ing of large software systems. He is currently
working on expanding the use of automation
tools within the NTT Group. He is a member of
the Information Processing Society of Japan.

https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201412fa2.html
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201412fa3.html
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201412fa4.html
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201412fa5.html

