
� NTT Technical Review

1. Introduction

Virtualization is finding widespread use as a tech-
nology to achieve flexibility and cost reductions in
managing computer resources in a cloud infrastruc-
ture. Furthermore, storage virtualization technology
can make multiple units of storage equipment appear
as a single unit and make a single unit of storage
appear as if it contains multiple units. It is an impor-
tant technology that makes it easy to manage virtual
machine images and to share application data.

This article introduces Sheepdog and OpenStack
Swift, open-source storage virtualization technolo-
gies now under development at the NTT Software
Innovation Center (SIC). The Sheepdog distributed
block storage system is a type of storage that can be
used as hard disk drives on personal computers (PCs)
or servers via file systems. The OpenStack Swift dis-
tributed object storage system, meanwhile, is a type
of storage that can read and write files using a REST
(representational state transfer) API (application pro-
gramming interface) and that enables large quantities
of data to be stored and shared among applications.

2. Sheepdog distributed block storage system

PCs and servers have become a major part of our
daily life. Files in a PC are read from and written to a

hard disk via a file system. Here, the hard disk is
treated as a type of block device that has the sole
function of reading and writing data in block units of
fixed size, and the file system has the task of writing
and reading files by managing the locations of file
data on the block device. Although there are various
types of file systems, they all share this basic type of
operation with respect to the block device. Block
storage, meanwhile, is a type of storage that can pro-
vide block devices. It has the basic role of reading/
writing and saving data and is considered to be the
most versatile storage method.

Virtual block devices are essential in the operation
of virtual machines. Therefore, in the construction of
a virtual environment, the mainstream approach is to
introduce shared storage appliances that can provide
virtual block devices (virtual disks) of any size via the
network. Shared storage can enhance the operability
and reliability of a virtual environment through such
virtualization functions as thin provisioning, storage
snapshots, and live migration.

Sheepdog is open source software (OSS) that com-
bines multiple commodity servers into a cluster
(Fig. 1) in order to construct block storage that can be
used in the same way as shared storage appliances. It
can bundle the internal disks of the servers belonging
to the cluster into a single storage pool, and it can
provide virtual disks to users from the pool. Sheepdog

R&D Efforts in Storage
Virtualization Technologies
Yoshifumi Fukumoto, Ichibee Naito, Toshio Hitaka,
and Masahiro Shiraishi

Abstract
The NTT Software Innovation Center is active in the research and development (R&D) of storage

virtualization technologies. This article introduces its R&D of Sheepdog, a distributed block storage
system that can be used from any file system, and OpenStack Swift, a robust distributed object storage
system featuring high operability.

Keywords: storage virtualization, distributed system, OSS

Feature Articles: R&D Efforts in Cloud Computing
Platform Technologies through Open Innovation

Vol. 13 No. 2 Feb. 2015 �

Feature Articles

can be used in virtualization infrastructure software
such as OpenStack and QEMU/KVM (Quick EMU-
lator/Kernel-based Virtual Machine), and it supports
the iSCSI (Internet Small Computer System Inter-
face) general storage interface.

Various issues arise when using ordinary shared
storage. These include scalability issues (prior design
is needed for extending capacity and performance,
degeneration is not possible in principle, and vendor
lock-in can occur) and reliability issues (service
interruptions, no access to some data because of hard-
ware failures). Sheepdog has been designed to
address these issues as a fully symmetric architecture
in which the servers making up a cluster all have the
same role. This gives Sheepdog three key features:
(1) easy addition/removal of cluster servers, enabling
flexible capacity scaling and load distribution in
accordance with system scale beyond the capabilities
of shared storage; (2) high reliability due to no single
point of failure and the capability to avoid service
interruptions and data loss even if some servers
should fail; and (3) high manageability due to the
automating of data rebalancing, redundancy restora-
tion, and other processes when adding/removing
servers, thereby reducing the number of necessary
manual operations.

A virtual disk provided by Sheepdog is divided and
multiplexed into objects of fixed size (initial size: 4
MB) that are then distributed among the servers mak-
ing up the cluster, as shown in Fig. 2(a). The consis-
tent hashing algorithm that is used for determining
where exactly to place these objects is depicted in
Fig. 2(b). In Sheepdog, a data structure called a vir-
tual node is generated with respect to each server
(physical node), and these virtual nodes are arranged
along a ring in random order. In the process of writing
data to a virtual disk, an object is generated or updat-

ed with respect to three physical nodes as the destina-
tion locations of that object. Specifically, based on
the virtual node determined by the object ID, a sec-
ond and third virtual node along the ring are selected,
and the physical nodes corresponding to those virtual
nodes are deemed to be that object’s destination loca-
tions. In this way, Sheepdog can mathematically
determine by consistent hashing where to place the
data object. This enhances autonomy by eliminating
the need for a centralized management server, thereby
contributing to features (1) to (3) above.

3. Recent activities

SIC is working to improve the operability and reli-
ability of Sheepdog so that it can be used with confi-
dence in commercial services.

Zookeeper, a de facto standard coordination kernel,
can be used with Sheepdog to manage the addition
and removal of servers belonging to the cluster. SIC
has performed exhaustive tests and long-term stabil-
ity tests on Sheepdog clusters combined with Zoo-
keeper to uncover problems, and has proposed revi-
sions to the Sheepdog community to solve any prob-
lems found and improve its quality.

SIC is also working to implement a multipath func-
tion that would enable the connection between a cli-
ent and Sheepdog to be made with more than one
server within the cluster to establish redundant paths
for reading/writing. This function would enable read-
ing/writing to continue with another server in the
event that an existing connection between the client
and server within the Sheepdog cluster were sev-
ered.

Furthermore, to prevent service disruption and data
loss, SIC is developing a function for using a remote
site in the event that an entire base fails due to a

Fig. 1. Sheepdog overview.

Applicable to
diverse applications

Backend of
virtual environment

File
server

Extract
virtual disks

Storage
pool

Commodity
servers

Consolidate

Sheepdog

Sheepdog
cluster

� NTT Technical Review

Feature Articles

severe disaster or power outage.
The Sheepdog open source community has also

implemented a function called erasure coding. Rather
than simply replicating objects to prevent data loss,
erasure coding is a technique that stores both divided
data and parity data in the manner of RAID 5 (redun-
dant array of independent disks, level 5). This func-
tion can reduce the consumption of disk space and
minimize hardware costs.

4. OpenStack Swift, a distributed
object storage system

It is now common for photographs taken with a
particular smartphone and stored on the cloud to be
made available for viewing by other terminals. As a
result, the amount of data stored on the cloud has
become massive, and the demand for low-cost, high-
reliability cloud storage has been growing. To meet
this need, the OpenStack community has developed
object storage software called OpenStack Swift
(referred to below as “Swift”). The NTT Group,
Rackspace, and other enterprises have had commer-
cial success with Swift.

Swift has three key features, as summarized below
(Fig. 3).

(1)	 File operations by HTTP (REST API)
Data on Swift can be managed by any terminals

including smartphones, tablets, and PCs through the
use of HTTP (Hypertext Transfer Protocol). Swift is
suitable for unstructured data such as backup, photos,
and videos.

(2)	 High reliability
Losing data stored on a storage system is unaccept-

able. Swift generally creates three replicas of data in
a cluster to achieve high reliability. Furthermore, a
process called replicator regularly runs on each
object-server node in the cluster to check whether the
data saved on that disk are also stored on two other
disks in the cluster. If it is determined that a disk has
failed and has been unmounted, a new replica of data
will be automatically reproduced.

(3)	 Scale out
Being a distributed autonomous system, Swift has

no single point of failure and is capable of scaling out
from a small cluster. A typical example of a Swift
cluster configuration is shown in Fig. 3. In this exam-
ple, the system consists of proxy nodes that receive
requests from clients and storage nodes that actually
store data. This results in highly extendible cluster
architecture since proxy nodes can be added if

Fig. 2. Consistent hashing.

Virtual nodes

Hash ring

Physical nodes
Virtual
disk

Objects

(a) Physical location of objects

ID: identification
IP: Internet protocol

(b) Data placement algorithm

obj 1

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

obj 2

obj 3

obj n

Virtual disk data are
divided into objects of
fixed size (4 MB).

The placement order on the
hash ring is calculated from
the IP address hash value.

The 1st node targeted for
placement is determined by
the object ID, enabling the
2nd and 3rd node to be
selected along the ring.

Each object is triplicated and
placed on various nodes by
consistent hashing.

obj 1 obj 1

obj 1

obj 2

obj 2

obj 2

obj 3

obj 3

obj 3

1

7

7

7

2

2

2

3

3

3

8

8

8

4

4

4

6

6
6

1

1

5

5

5

Vol. 13 No. 2 Feb. 2015 �

Feature Articles

requests become excessive, while storage nodes can
be added if storage capacity becomes insufficient.

5. Improvement of Swift operability

SIC seeks to make Swift operation more efficient in
order to facilitate the commercial cluster composed
of distributed autonomous nodes and to provide ser-
vices at low cost. To analyze the total operation time
for a cluster with a total capacity of one petabyte,
researchers at SIC constructed an actual PoC (proof
of concept) environment and performed a quantita-
tive evaluation of the time taken up by system config-
uring, system monitoring, equipment expansion
(scale out), troubleshooting and recovery, and soft-
ware updates. It was found that the time taken up by
node addition for scale-out purposes as well as the
time spent recovering from a disk failure made up a
high percentage of the total operating time, so mea-
sures for improving in this regard were investigated.

To reduce the time needed to add nodes, it was
decided to automatically install the OS (operating
system) and applications using a Preboot Execution
Environment (PXE) boot, to automate configuration

settings using Chef, a configuration management
tool, and to use Tempest, a tool for automating API
testing in a pre-release operation check. Adopting
these measures made a portion of the node scale-out
procedure more efficient, reducing the time by about
two-thirds compared to current values (Fig. 4). Tem-
pest is a testing tool developed by the OpenStack
community, but at SIC, researchers expanded the test
items for Swift, which enabled efficient as well as
complete testing.

The time from a disk failure to recovery must be
minimized to ensure high data reliability. This study
at SIC found that the S.M.A.R.T. (Self-Monitoring
Analysis and Reporting Technology) system built
into hard disk drives could be used to create a tool for
automating the detection of a failed disk and for
unmounting that disk (Fig. 5). This tool was estimat-
ed to reduce the time to recovery to one-fifth that of
the manual procedure.

6. Future developments

Sheepdog is a fully symmetric distributed block
storage system that provides high extendibility,

Fig. 3. Features of Swift.

Storage nodes

IT: information technology

Proxy nodes

IT
system

Smartphone,
tablets

PCs

Load balancer

Network

(2) High reliability
 (Saves three replicas of data automatically)

(1) File operations by HTTP
 (Upload, download, delete, list)

(3) Scale out
 (Increases number of proxy/storage nodes)

Supports increase in capacity

Supports increase in
number of requests

Photos
videos,
images

Music,
personal
data

Backup

Shared files

� NTT Technical Review

Feature Articles

reliability, and ease of operation. It is beginning to be
introduced into actual services in Japan and in other
countries. To help customers feel at ease about intro-
ducing Sheepdog in their operations, we plan to con-
tinue our efforts to improve quality and reliability
while also sharing operating procedures and carrying
out tests with users.

Swift is a highly reliable, scalable object storage
system. We plan to further develop the operation
automation with the operating efficiencies introduced

here while also developing erasure coding (a function
for raising disk usage efficiency while maintaining
robustness), which is being studied as a new function
in the Swift community.

Going forward, we plan to pursue quality improve-
ments and function extensions in both Sheepdog and
Swift together with major developers and users in
those communities with the aim of improving stabil-
ity, performance, and operability.

Fig. 4. Raising efficiency at time of node scale out.

1. Create configuration for new node

2. Create network settings

3. Install server, connect server to the network

4. Install OS

5. Make OS settings

6. Install monitoring agent

7. Install Swift application

1. Create configuration for new node

Making process
efficient using

PXE

(a) Old (b) New

Making process
efficient using
Chef/Tempest

Old, inefficient operations

New, efficient operations

2. Create network settings

3. Install server, connect server to the network

4. Turn on power and network boot

8. Incorporate in Swift cluster

9. Incorporate drives in cluster (storage only)

10. Use Chef to automate steps from incorporating in
 load balancer to testing cluster operation

8. Incorporate in Swift cluster

9. Incorporate drives in cluster (storage only)

10. Incorporate in load balancer pool (proxies only)

11. Create monitoring settings

12. Test Swift node settings

13. Test Swift cluster operation

Fig. 5. Raising efficiency at time of disk failure.

(Old) (New)

Disk
failure

Detect failure

Operator
assisted

Detect and
unmount
using OSS
tools and
commercial
tools

Automatic
recovery
by Swift

Automatic
recovery
by Swift

Start replication

Complete replication

Unmount
failed disk

Detect failure

Regular execution of
smartctl command

Start replication

Complete replication

Unmount
failed disk

Disk
failure

Vol. 13 No. 2 Feb. 2015 �

Feature Articles

Yoshifumi Fukumoto
Research Engineer, Distributed Computing

Technology Project, NTT Software Innovation
Center.

He received the B.E. in information engineer-
ing from Keio University, Tokyo, in 2009. He
joined NTT Cyber Space Laboratories in 2009
and studied distributed machine learning plat-
forms. He is currently studying distributed stor-
age systems. He is a member of the Database
Society of Japan.

Ichibee Naito
Research Engineer, NTT Software Innovation

Center.
He received the M.E. in information engineer-

ing from Waseda University, Tokyo, in 2006. He
joined NTT Cyber Space Laboratories (now,
NTT Media Intelligence Laboratories) in 2006
and studied distributed autonomous computing
platforms. He is currently studying reliability of
distributed storage systems.

Masahiro Shiraishi
Senior Research Engineer, Supervisor, NTT

Software Innovation Center.
He received the M.E. in mathematics from

Kagoshima University in 1991. He joined NTT
in 1991 and studied and developed operating
system platforms. He is currently studying dis-
tributed storage systems.

Toshio Hitaka
Senior Research Engineer, Supervisor, Distrib-

uted Computing Technology Project, NTT Soft-
ware Innovation Center.

He received the B.E. in mathematics in 1992
and the M.E. in information engineering in 1994
from Hokkaido University. Since joining NTT in
1994, he has been engaged in R&D of database
management system technology. As a result of
organizational changes in July 2012, he is now
with the NTT Software Innovation Center, and
has been engaged in R&D of operating systems
and virtualization technology.

